Background: Secretome genes, encoding proteins secreted from the cell, are involved in the tumor immune response and correlated with levels of tumor mutation burden (TMB) in multiple tumors. This study aimed to identify core secretome genes and their potential association with immunomodulators and immune infiltration in high TMB groups across 14 major solid tumors through bioinformatics analysis.
Methods: Multi-omics data for 14 major solid tumors were downloaded from The Cancer Genome Atlas (TCGA) database. Patients were divided into high TMB (TMB-high) and low TMB (TMB-low) groups using the median TMB values for each of the solid tumors. The CIBERSORT algorithm was conducted to estimate the proportion of 22 tumor-infiltrating immune cells (TIICs). Kaplan-Meier analysis and the log-rank test were utilized to screened prognosis-related genes. The correlations between core secretome genes and TIICs were analyzed using Spearman correlation coefficients.
Results: In TMB-high groups, multi-omics data analysis revealed that secretome genes were strongly associated with clinical characteristics, and 65 prognosis-related secretome genes were screened. Among the prognosis-related genes, 21 core secretome genes were identified, and strongly associated with five types of TIICs, namely activated NK cells, follicular helper T cells, CD8 T cells, and macrophages M0 and M2. Notably, three secretome genes (, , and ) were significantly related to immunomodulators and TIICs in multiple solid tumors. In addition, 12 core secretome genes were significantly differentially expressed between responding and non-responding patients receiving immunotherapy. Furthermore, core secretome genes may be involved in the PI3K/AKT signaling pathway.
Conclusion: We examined the prognostic significance of secretome genes and their potential association with immunomodulators and immune infiltration across 14 major solid tumors. In summary, three secretome genes (, , and ) may be pivotal mediators of immune infiltration in TMB-high patients, which may help to identify patients who could benefit from immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8527654 | PMC |
http://dx.doi.org/10.2147/IJGM.S333141 | DOI Listing |
Adv Clin Exp Med
January 2025
Luddy School of Informatics, Computing and Engineering, Indiana University, Bloomington, USA.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma (RCC). Due to the lack of symptoms until advanced stages, early diagnosis of ccRCC is challenging. Therefore, the identification of novel secreted biomarkers for the early detection of ccRCC is urgently needed.
View Article and Find Full Text PDFJ Proteome Res
January 2025
Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, 28040 Madrid, Spain.
As part of the intestinal microbiota, can elicit a humoral response in the gastrointestinal tract (GIT) that is mainly directed toward hyphal antigens. This response has been implicated in controlling the invasive form of the fungus and maintaining the yeast as an innocuous commensal. However, the specific targets of this response are still unknown.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Regenerative Medicine and Cellular Pharmacology Laboratory, Department of Dermatology and Allergology, University of Szeged, H-6720 Szeged, Hungary.
Drug resistance is a significant challenge in pancreatic ductal adenocarcinoma (PDAC), where stromal elements such as adipose-derived mesenchymal stem cells (ASCs) contribute to a chemoresistant tumor microenvironment (TME). This study explored the effects of oxaliplatin (OXP) and 5-fluorouracil (5-FU) on PDAC cells (Capan-1) and ASCs to investigate the mechanisms of chemoresistance. While OXP and 5-FU reduced Capan-1 viability in a dose- and time-dependent manner, ASCs demonstrated high resistance, maintaining > 90% viability even at cytotoxic doses.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Immunoregulation, Institute of Medical Science, Tokyo Medical University, 6-1-1 Shinjuku, Shinjuku-ku, Tokyo 160-8402, Japan.
Regenerative medicine utilizes stem cells to repair damaged tissues by replacing them with their differentiated cells and activating the body's inherent regenerative abilities. Mesenchymal stem cells (MSCs) are adult stem cells that possess tissue repair and regenerative capabilities and immunomodulatory properties with a much lower risk of tumorigenicity, making them a focus of numerous clinical trials worldwide. MSCs primarily exert their therapeutic effects through paracrine effects via secreted factors, such as cytokines and exosomes.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
National Medical Research Center for Hematology, Moscow 125167, Russia.
In patients with acute leukemia (AL), malignant cells and therapy modify the properties of multipotent mesenchymal stromal cells (MSCs) and their descendants, reducing their ability to maintain normal hematopoiesis. The aim of this work was to elucidate the alterations in MSCs at the onset and after therapy in patients with AL. The study included MSCs obtained from the bone marrow of 78 AL patients (42 AML and 36 ALL) and healthy donors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!