Abstract: Cross-linkers have great importance in textile due to the widespread utilization of cellulosic fibers for clothing. Unfortunately, the acute toxicity of formaldehyde-based resins and the poor performance of non-formaldehyde resins still keep the research door open for scientists in this area. Herein, we demonstrated copper nanoparticles induced trimesic acid grafted cellulose as a sustainable solution for multifunctional easy-care clothing. Our treated fabric presents crease recovery angle value of 248° comparable to that of most promising citric acid-based cross-linkers at the chemical concentration of trimesic acid as low as 2% with a sweeping improvement of around 30% in strength retention, not reported earlier. The relatively low fabric stiffness, without any yellowing, is contributing to the comfort and aesthetic demand while nanoparticles induction promoting utmost antimicrobial need. For the first time, the superiority of the development was validated by interlacing the fabric/finish traits with sustainability building blocks that provide the step forward for rapid industrialization. Furthermore, environmental, health, and safety mapping comparison provides a better understanding of the intensity of hazards that different finishing crosslinkers pose on the environment and public health. With improved performance and superior sustainability, such fabric can act as a preferable alternative to the multifunctional easy-care fabric market.

Supplementary Information: The online version contains supplementary material available at 10.1007/s10570-021-04251-5.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8532103PMC
http://dx.doi.org/10.1007/s10570-021-04251-5DOI Listing

Publication Analysis

Top Keywords

trimesic acid
12
copper nanoparticles
8
nanoparticles induced
8
induced trimesic
8
acid grafted
8
multifunctional easy-care
8
grafted cellulose-an
4
cellulose-an effective
4
effective non-hazardous
4
non-hazardous processing
4

Similar Publications

Comparison of Hydrogen Bonded Organic Framework with Reduced Graphene Oxide-Pd Based Nanocatalyst: Which One Is More Efficient for Entrapment of Nitrophenol Pollutants?

Langmuir

January 2025

Prof. Rashidi Laboratory of Organometallic Chemistry & Material Chemistry, Department of Chemistry, College of Science, Shiraz University, Shiraz, 7194684795, Iran.

In this study, a Pd nanoparticles@hydrogen-bonded organic framework (Pd NPs@HOF) thin film was fabricated at the toluene-water interface. The HOF was formed through the interaction of trimesic acid (TMA) and melamine (Mel) in the water phase, while Pd(0) was produced from the reduction of [PdCl(cod)] in the organic phase. The as-synthesized Pd NPs@HOF thin film was demonstrated to be an effective catalyst for the selective reduction of -nitrophenol and -nitrophenol to -aminophenol and -aminophenol.

View Article and Find Full Text PDF

Nickel-based metal-organic frameworks, denoted as three-dimensional nickel trimesic acid frameworks (3D Ni-TMAF), are gaining significant attention for their application in nonenzymatic glucose sensing due to their unique properties. Ni-MOFs possess a high surface area, tunable pore structures, and excellent electrochemical activity, which makes them ideal for facilitating electron transfer and enhancing the catalytic oxidation of glucose. This research describes a new electrochemical enzyme-mimic glucose biosensor in biological solutions that utilizes 3D nanospheres Ni-TMAF created layer-by-layer on a highly porous nickel substrate.

View Article and Find Full Text PDF

New Insights on Iron-Trimesate MOFs for Inorganic As(III) and As(V) Adsorption from Aqueous Media.

Nanomaterials (Basel)

December 2024

Unidad Departamental de Química Analítica, Departamento de Química, Facultad de Ciencias, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Spain.

Arsenic contamination of water endangers the health of millions of people worldwide, affecting certain countries and regions with especial severity. Interest in the use of Fe-based metal organic frameworks (MOFs) to remove inorganic arsenic species has increased due to their stability and adsorptive properties. In this study, the performance of a synthesized Nano-{Fe-BTC} MOF, containing iron oxide octahedral chains connected by trimesic acid linkers, in adsorbing As(III) and As(V) species was investigated and compared with commercial BasoliteF300 MOF.

View Article and Find Full Text PDF

"Turn-on-off" Fluorescent Probes Based on Carbon Nanoparticles for Hypochlorite and Fe Detection.

J Fluoresc

January 2025

College of Chemistry and Materials Science, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Normal University, Wuhu, 241000, China.

The identification of ClO and iron ions in water medium is a difficult task and has been one of the hot issues in analytical chemistry. For this objective, we synthesized carbon nanoparticles (CNPs) through a solvothermal reaction between 1, 3, 5-trimesic acid and o-phenylenediamine, which served as a sequential fluorescent probe for ClO and Fe ions. The obtained CNPs were spherical particles with a diameter of 26.

View Article and Find Full Text PDF

Dual-mode colorimetric and chemiluminescence aptasensor for organophosphorus pesticides detection using aptamer-regulated peroxidase-like activity of TA-Cu.

Talanta

April 2025

Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, No. 29 of 13th Street, TEDA, Tianjin, 300457, PR China. Electronic address:

The residues of organophosphorus pesticides (OPs) in food pose a huge threat to human health. Therefore, the development of detection methods with simple design and high sensitivity is urgently needed. Here, a colorimetric/chemiluminescence (CL) dual-mode aptasensor strategy with high selectivity and sensitivity for detecting Parathion-methyl (PM) was designed based on aptamer-regulated nanozyme activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!