Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Coexisting with the current COVID-19 pandemic is a global reality that comes with unique challenges impacting daily interactions, business, and facility maintenance. A monumental challenge accompanied is continuous and effective disinfection of shared spaces, such as office/school buildings, elevators, classrooms, and cafeterias. Although ultraviolet light and chemical sprays are routines for indoor disinfection, they irritate humans, hence can only be used when the facility is unoccupied. Stationary air filtration systems, while being irritation-free and commonly available, fail to protect all occupants due to limitations in air circulation and diffusion. Hence, we present a novel collaborative robot (cobot) disinfection system equipped with a Bernoulli Air Filtration Module, with a design that minimizes disturbance to the surrounding airflow and maneuverability among occupants for maximum coverage. The influence of robotic air filtration on dosage at neighbors of a coughing source is analyzed with derivations from a Computational Fluid Dynamics (CFD) simulation. Based on the analysis, the novel occupant-centric online rerouting algorithm decides the path of the robot. The rerouting ensures effective air filtration that minimizes the risk of occupants under their detected layout. The proposed system was tested on a 2 × 3 seating grid (empty seats allowed) in a classroom, and the worst-case dosage for all occupants was chosen as the metric. The system reduced the worst-case dosage among all occupants by 26% and 19% compared to a stationary air filtration system with the same flow rate, and a robotic air filtration system that traverses all the seats but without occupant-centric planning of its path, respectively. Hence, we validated the effectiveness of the proposed robotic air filtration system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8530773 | PMC |
http://dx.doi.org/10.1016/j.robot.2021.103919 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!