Higher-order topological insulator in cubic semiconductor quantum wells.

Sci Rep

CENTERA Laboratories, Institute of High Pressure Physics, Polish Academy of Sciences, 01-142, Warsaw, Poland.

Published: October 2021

The search for exotic new topological states of matter in widely accessible materials, for which the manufacturing process is mastered, is one of the major challenges of the current topological physics. Here we predict higher order topological insulator state in quantum wells based on the most common semiconducting materials. By successively deriving the bulk and boundary Hamiltonians, we theoretically prove the existence of topological corner states due to cubic symmetry in quantum wells with double band inversion. We show that the appearance of corner states does not depend solely on the crystallographic orientation of the meeting edges, but also on the growth orientation of the quantum well. Our theoretical results significantly extend the application potential of topological quantum wells based on IV, II-VI and III-V semiconductors with diamond or zinc-blende structures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548307PMC
http://dx.doi.org/10.1038/s41598-021-00577-zDOI Listing

Publication Analysis

Top Keywords

quantum wells
16
topological insulator
8
wells based
8
corner states
8
quantum
5
topological
5
higher-order topological
4
insulator cubic
4
cubic semiconductor
4
semiconductor quantum
4

Similar Publications

Precise and rapid disease detection is critical for controlling infectious diseases like COVID-19. Current technologies struggle to simultaneously identify viral RNAs and host immune antibodies due to limited integration of sample preparation and detection. Here, we present acoustofluidic integrated molecular diagnostics (AIMDx) on a chip, a platform enabling high-speed, sensitive detection of viral immunoglobulins [immunoglobulin A (IgA), IgG, and IgM] and nucleic acids.

View Article and Find Full Text PDF

Structural and photoelectric properties of p-i-n photodiodes based on GeSiSn/Si multiple quantum dots both on Si and silicon-on-insulator (SOI) substrates were investigated. Elastic strained state of grown films was demonstrated by x-ray diffractometry. Annealing of p-i-n structures before the mesa fabrication can improve the ideality factor of current-voltage characteristics.

View Article and Find Full Text PDF

Resonant and Non-Resonant Impurity States Related to GaAs/AlGaAs Quantum Well Sub-Bands.

Materials (Basel)

December 2024

Centro de Investigación en Ciencias-IICBA, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico.

The energy positions and wave function shapes of the ground and excited states of impurities, including resonance states, are studied using the expansion of the impurity wave function in basis functions. The structures under study are rectangular GaAs/AlGaAs quantum wells with four different widths. In all cases, the impurity binding energy (relative to the corresponding sub-band) has a maximum at or near the center of the quantum well, decreases as the heterointerface is approached, and apparently has a limit of 0 if the impurity moves deeper into the barrier.

View Article and Find Full Text PDF

Laser diodes based on solution-processed semiconductor quantum dots (QDs) present an economical and color-tunable alternative to traditional epitaxial lasers. However, their efficiency is significantly limited by non-radiative Auger recombination, a process that increases lasing thresholds and diminishes device longevity through excessive heat generation. Recent advancements indicate that these limitations can be mitigated by employing spherical quantum wells, or quantum shells (QSs), in place of conventional QDs.

View Article and Find Full Text PDF

Tunable Characteristics of Optical Frequency Combs from InGaAs/GaAs Two-Section Mode-Locked Lasers.

Sensors (Basel)

December 2024

School of Electrical and Electronic Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.

We observed tunable characteristics of optical frequency combs (OFCs) generated from InGaAs/GaAs double quantum wells (DQWs) asymmetric waveguide two-section mode-locked lasers (TS-MLLs). This involves an asymmetric waveguide mode-locked semiconductor laser (AWML-SL) operating at a center wavelength of net modal gain of approximately 1.06 µm, which indicates a stable pulse shape, with the power-current(P-I) characteristic curve revealing a small difference between forward and reverse drive currents in the gain region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!