A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A novel technique to assess rotational deformities in lower extremities using CT-based motion analysis. | LitMetric

Rotational deformities following intramedullary (IM) nailing of tibia has a reported incidence of as high as 20%. Common techniques to measure deformities following IM nailing of tibia are either based on clinical assessment, plain X-rays or Computed Tomography (CT) comparing the treated leg with the uninjured contralateral side. All these techniques are based on examiners manual calculation inherently subject to bias. Following our previous rigorous motion analysis and symmetry studies on hemi pelvises, femurs and orthopaedic implants, we aimed to introduce a novel fully digital technique to measure rotational deformities in the lower legs. Following formal institutional approval from the Imperial College, CT images of 10 pairs of human lower legs were retrieved. Images were anonymized and uploaded to a research server. Three dimensional CT images of the lower legs were bilaterally reconstructed. CT-based motion analysis (CTMA) was used and the mirrored images of the left side were merged with the right side proximally as stationary and distally as moving objects. Discrepancies in translation and rotation were automatically calculated. Our study population had a mean age of 54 ± 20 years. There were six males and four females. We observed a greater variation in translation (mm) of Centre of Mass (COM) in sagittal plane (95% CI - 2.959-.292) which was also presented as rotational difference alongside the antero-posterior direction or Y axis (95% CI .370-1.035). In other word the right lower legs in our study were more likely to be in varus compared to the left side. However, there were no statistically significant differences in coronal or axial planes. Using our proposed fully digital technique we found that lower legs of the human adults were symmetrical in axial and coronal plane. We found sagittal plane differences which need further addressing in future using bigger sample size. Our novel recommended technique is fully digital and commercially available. This new technique can be useful in clinical practice addressing rotational deformities following orthopaedic surgical intervention. This new technique can substitute the previously introduced techniques.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548303PMC
http://dx.doi.org/10.1038/s41598-021-00532-yDOI Listing

Publication Analysis

Top Keywords

lower legs
20
rotational deformities
16
motion analysis
12
fully digital
12
deformities lower
8
ct-based motion
8
nailing tibia
8
digital technique
8
left side
8
sagittal plane
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!