AI Article Synopsis

  • * Researchers analyzed climate data from 336 children with AA in Philadelphia between 2015 and 2017, finding significant correlations between AA flare frequency and factors such as UV index, precipitation, and air pressure.
  • * The study revealed that children with atopic conditions were more impacted by climate factors, indicating a possible relationship between specific environmental conditions and the severity of AA flares.

Article Abstract

Patients with alopecia areata (AA) may experience episodic disease flares characterized by increasing hair loss that follow a seasonal pattern. However, no studies have examined whether specific climate factors contribute to the seasonal pattern of AA flares. Using Spearman rank correlation analyses, we assessed the association between climate variables and AA flare frequency per month in 336 children with AA in Philadelphia, Pennsylvania. Region-specific monthly values for average ambient temperature, air pressure, cloudiness, hours of sunlight, relative humidity, number of days with sun, number of days with rain, volume of precipitation, wind gust, wind speed, and UV index from January 2015 to December 2017 were obtained from World Weather Online. We found significant (P < 0.05) correlations between AA flare frequency and UV index (R = - 0.66), precipitation (R = - 0.66), number of days with rain (R = - 0.70), number of days with sun (R = 0.62), and air pressure (R = 0.80). Stratified analyses showed even stronger associations with UV index and precipitation in patients with an atopic comorbidity. New significant correlations appeared with temperature, wind speed, and UV index of the prior month. However, in patients who did not have atopic comorbidities, we generally observed weaker and non-significant correlations between climate and AA flare frequency. This study suggests that certain climate factors may mediate the seasonal pattern of AA flares and may contribute to AA pathogenesis. Atopic AA patients may be more susceptible to the influence of climate compared to those with no history of atopy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8548540PMC
http://dx.doi.org/10.1038/s41598-021-00433-0DOI Listing

Publication Analysis

Top Keywords

climate factors
8
alopecia areata
8
philadelphia pennsylvania
8
seasonal pattern
8
number days
8
influence climate
4
factors pediatric
4
pediatric alopecia
4
areata flares
4
flares philadelphia
4

Similar Publications

Background: Japanese encephalitis (JE) is a zoonotic parasitic disease caused by the Japanese encephalitis virus (JEV), and may cause fever, nausea, headache, or meningitis. It is currently unclear whether the epidemiological characteristics of the JEV have been affected by the extreme climatic conditions that have been observed in recent years.

Objective: This study aimed to examine the epidemiological characteristics, trends, and potential risk factors of JE in Taiwan from 2008 to 2020.

View Article and Find Full Text PDF

The shifting of buffer crop repertoires in pre-industrial north-eastern Europe.

Sci Rep

January 2025

Department of Archaeology, Faculty of History, Vilnius University, Universiteto St. 7, Vilnius, 01513, Lithuania.

This study explores how major climatic shifts, together with socioeconomic factors over the past two millennia, influenced buffer crop selection, focusing on five crops: rye, millet, buckwheat, oat, and hemp. For this study, we analyzed archaeobotanical data from 135 archaeological contexts and historical data from 242 manor inventories across the northeastern Baltic region, spanning the period from 100 to 1800 AD. Our findings revealed that rye remained a main staple crop throughout the studied periods reflecting environmental adaptation to northern latitudes.

View Article and Find Full Text PDF

Under the background of climate change, the escalating air pollution and extreme weather events have been identified as risk factors for chronic respiratory diseases (CRD), causing serious public health burden worldwide. This review aims to summarize the effects of changed atmospheric environment caused by climate change on CRD. Results indicated an increased risk of CRD (mainly COPD, asthma) associated with environmental factors, such as air pollutants, adverse meteorological conditions, extreme temperatures, sandstorms, wildfire, and atmospheric allergens.

View Article and Find Full Text PDF

Precipitation changes reshape desert soil microbial community assembly and potential functions.

Environ Res

January 2025

Linze Inland River Basin Research Station, Key Laboratory of Ecohydrology of Inland River Basin, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu, 730000, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Understanding the responses of desert microbial communities to escalating precipitation changes is a significant knowledge gap in predicting future soil health and ecological function. Through a five-year precipitation manipulation experiment, we investigated the contrasting eco-evolutionary processes of desert bacteria and fungi that manifested in changes to the assembly and potential functions of the soil microbiome. Elevated precipitation increased the alpha diversity and network complexity of bacteria and fungi, proportion of non-dominant phyla, and abundance of carbon- and nitrogen-fixing bacteria and saprophytic, symbiotic, and pathogenic fungi.

View Article and Find Full Text PDF

Moderating Effect of Green Space on Relationship Between Atmospheric Particulate Matter and Cardiovascular and Cerebrovascular Disease Mortality in Ningxia, China.

Environ Res

January 2025

School of Public Health, Ningxia Medical University, Yinchuan, Ningxia, 750004, China; Climate, Air Quality Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC 3004, Australia. Electronic address:

Objective: This study explores the moderating effect of green space on the association between atmospheric particulate matter (PM) and cardiovascular and cerebrovascular disease (CCVD) mortality.

Methods: Data on CCVD mortality, PM, meteorological factors, and the Normalized Difference Vegetation Index (NDVI) of green spaces in Ningxia from 2010 to 2020 were collected. A time-series generalized additive mixed-effect model (GAMM) was applied to analyze the exposure-response relationship between PM and CCVD mortality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!