Polycrystalline diamond coating on 3D printed titanium scaffolds: Surface characterisation and foreign body response.

Mater Sci Eng C Mater Biol Appl

Center for Additive Manufacturing, School of Engineering, RMIT University, VIC 3000, Australia. Electronic address:

Published: November 2021

Titanium-based implants are the leading material for orthopaedic surgery, due to their strength, versatility, fabrication via additive manufacturing and invoked biological response. However, the interface between the implant and the host tissue requires improvement to better integrate the implant material and mitigate foreign body response. The interface can be manipulated by changing the surface energy, chemistry, and topography of the Titanium-based implant. Recently, polycrystalline diamond (PCD) has emerged as an exciting coating material for 3D printed titanium scaffolds showing enhanced mammalian cell functions while inhibiting bacterial attachment in vitro. In this study, we performed in-depth characterisation of PCD coatings investigating the surface topography, thickness, surface energy, and compared its foreign body response in vivo with uncoated titanium scaffold. Coating PCD onto titanium scaffolds resulted in a similar microscale surface roughness (RMS = 24 μm; RMS = 28 μm), increased nanoscale roughness (RMS = 35 nm; RMS = 66 nm) and a considerable decrease in surface free energy (E = 4 mN m; E = 16 mN m). These surface property changes were supported by X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy as corresponding to observed surface chemistry changes induced by the coating. The underlying mechanism of how the diamond coatings chemical and physical properties changes the wettability of implants was examined. In vivo, the coated scaffolds induced similar level of fibrous encapsulation with uncoated scaffolds. This study thus provides further insight into the physicochemical characteristics of PCD coatings, adding evidence to the promising potential of PCD-coatings of medical implants.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.msec.2021.112467DOI Listing

Publication Analysis

Top Keywords

titanium scaffolds
12
foreign body
12
body response
12
polycrystalline diamond
8
printed titanium
8
surface
8
response interface
8
surface energy
8
pcd coatings
8
scaffolds
5

Similar Publications

The porous structure is crucial in bone tissue engineering for promoting osseointegration. Among various structures, triply periodic minimal surfaces (TPMS) -Gyroid has been extensively studied due to its superior mechanical and biological properties. However, previous studies have given limited attention to the impact of unit cell size on the biological performance of scaffolds.

View Article and Find Full Text PDF

Mandibular Reconstruction With a Patient-Specific Implant Following Surgical Excision of an Acanthomatous Ameloblastoma in a Dog.

J Vet Dent

January 2025

Department of Dentistry, Oral and Maxillo-facial Surgery, Eastcott Veterinary Referrals, Part of Linnaeus Group, Swindon, UK.

Canine acanthomatous ameloblastoma (CAA) is an invasive benign epithelial odontogenic tumour most commonly affecting the mandible of large breed dogs. To the author's knowledge, this report describes the first computer-aided design patient-specific implant (PSI) that has been placed for a critical sized bone defect in mandibular reconstruction of a dog in the UK. The aim was to restore mandibular stability using a regenerative approach combining a titanium locking plate and compression-resistant matrix infused with recombinant human bone morphogenetic protein-2 (rhBMP-2) to bridge the 85 mm mandibular defect created by a segmental mandibulectomy.

View Article and Find Full Text PDF

3D Printed Titanium Scaffolds with Bi-Directional Gradient QK-Functionalized Surface.

Adv Mater

January 2025

National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China.

3D printed titanium scaffold has promising applications in orthopedics. However, the bioinert titanium presents challenges for promoting vascularization and tissue growth within the porous scaffold for stable osteointegration. In this study, a modular porous titanium scaffold is created using 3D printing and a gradient-surface strategy to immobilize QK peptide on the surface with a bi-directional gradient distribution.

View Article and Find Full Text PDF

The present study aims to analyze the thermal regulation of the Ce/Ce ratio on the nanonetwork titania layer over the titanium (Ti) surface developed by the alkali-mediated surface modification approach. The effect of sequential heat treatment from 200 to 800 °C was evaluated for its surface characteristics such as morphology, phase formation, roughness, hardness, hydrophilicity, etc. Surface oxidation by temperatures up to 600 °C demonstrated a progressive increase in the Ce (CeO) content with a rutile TiO network layer over the Ti surface.

View Article and Find Full Text PDF

Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!