Hydrogels represent a key element in the development of in vitro tumor models, by mimicking the typical 3D tumor architecture in a physicochemical manner and allowing the study of tumor mechanisms. Here we developed a thermo-sensitive, natural polymer-based hydrogel, where chitosan and pectin were mixed and, after a weak base-induced chitosan gelation, a stable semi-Interpenetrating Polymer Network formed. This resulted thermo-responsive at 37 °C, injectable at room temperature, stable up to 6 weeks in vitro, permeable to small/medium-sized molecules (3 to 70 kDa) and suitable for cell-encapsulation. Tunable mechanical and permeability properties were obtained by varying the polymer content. Optimized formulations successfully supported the formation and growth of human colorectal cancer spheroids up to 44 days of culture. The spheroid dimension and density were influenced by the semi-IPN stiffness and permeability. These encouraging results would allow the implementation of faithful tumor models for the study and development of personalized oncological treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2021.118633DOI Listing

Publication Analysis

Top Keywords

tumor models
8
tumor
5
thermo-sensitive chitosan/pectin
4
chitosan/pectin hydrogel
4
hydrogel long-term
4
long-term tumor
4
tumor spheroid
4
spheroid culture
4
culture hydrogels
4
hydrogels represent
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!