Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The aim of research was to develop biopolymer films based on natural polysaccharides. For the first time, biodegradable films were obtained on the basis of a furcellaran-chitosan polyelectrolyte complex. The conditions for its formation were determined by measuring the zeta potential as a function of colloid pH, the size of pure components and their mixtures. The structure and morphology of the prepared films were characterised by FT-IR and AFM analysis. The lowest WVTR values were observed for the FUR and the CHIT-FUR films at the ratio of 9:1. The mechanical, water and rheological properties depend on the weight ratio of furcellaran to chitosan in the mixture. The thermal stability has been improved in CHIT-FUR films at the 9:1 ratio. The results obtained create the possibility of successfully using CHIT-FUR films in the development of biodegradable packaging materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carbpol.2021.118627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!