Despite enormous challenges in accessing sustainable energy supplies and advanced energy technologies, Ethiopia has one of the world's fastest growing economies. The development of renewable energy technology and the building of a green legacy in the country are being prioritized. The total installed capacity for electricity generation in Ethiopia is 4324.3 MW as on October, 2018. Renewable energy accounts for 96.5% of total generation; however, despite the county's enormous biomass energy potential, only 0.58% of power is generated using biomass. Ethiopia has surplus woody biomass, crop residue and animal dung resources which comprise about 141.8 million metric tons of biomass availability per year. At present the exploited potential is about 71.9 million metric tons per year. This review paper provides an in-depth assessment of Ethiopia's biomass energy availability, potential, challenges, and prospects. The findings show that, despite Ethiopia's vast biomass resource potential, the current use of modern energy from biomass is still limited. As a result, this study supports the use of biomass-based alternative energy sources without having a negative impact on the socioeconomic system or jeopardizing food security or the environment. This finding also shows the challenges, opportunities and possible solutions to tackle the problem to expand alternative energy sources. The most effective techniques for producing and utilizing alternate energy sources were also explored. Moreover, some perspectives are given based on the challenges of using efficient energy production and sustainable uses of biomass energy in Ethiopia as it could be also implemented in other developing countries. We believe that the information in this review will shed light on the current and future prospects of biomass energy deployment in Ethiopia.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549167 | PMC |
http://dx.doi.org/10.1186/s13068-021-02060-3 | DOI Listing |
Adv Biotechnol (Singap)
October 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and Center for Algae Innovation & Engineering Research, School of Resources and Environment, Nanchang University, Nanchang, 330031, China.
Microalgae offer a promising alternative for sustainable nutritional supplements and functional food ingredients and hold potential to meet the growing demand for nutritious and eco-friendly food alternatives. With the escalating impacts of global climate change and increasing human activities, microalgal production must be enhanced by reducing freshwater and land use and minimizing carbon emissions. The advent of 3D printing offers novel opportunities for optimizing microalgae production, though it faces challenges such as high production costs and scalability concerns.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
September 2024
School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen, 518107, China.
Proteins are indispensable for maintaining a healthy diet and performing crucial functions in a multitude of physiological processes. The growth of the global population and the emergence of environmental concerns have significantly increased the demand for protein-rich foods such as meat and dairy products, exerting considerable pressure on global food supplies. Single-cell proteins (SCP) have emerged as a promising alternative source, characterized by their high protein content and essential amino acids, lipids, carbohydrates, nucleic acids, inorganic salts, vitamins, and trace elements.
View Article and Find Full Text PDFACS Nano
January 2025
Engineering Research Center of Forestry Biomass Materials and Bioenergy (Ministry of Education), National Forest and Grass Administration Woody Spices (East China) Engineering Technology Research Center, Beijing Forestry University, Beijing 100083, China.
Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported.
View Article and Find Full Text PDFHeliyon
January 2025
School of Chemical Engineering, University of Campinas, Av. Albert Einstein 500, Campinas, SP, 13083-852, Brazil.
This work investigates the energy cane pyrolysis by process simulation in Aspen Plus, evaluating which variety maximizes bio-oil yield with further economics to evaluate process feasibility. Three cultivars were selected: two natural, and , and one, IACSP955000, generated by a breeding program. Firstly, 100 kg/h of wet biomass entered a stoichiometric reactor (RSTOIC) at 450 °C and 40 bar, generating biochar, bio-oil and gases.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China.
The interplay between root exudates and rhizobacteria is essential for enhancing agricultural productivity. Herein, the impacts of cerium dioxide nanomaterials (CeO NMs) on these interactions in soybean plants were investigated. Following 3-5 weeks of exposure to 5 mg·kg CeO NMs, the composition of root exudates changed over time, with isoflavone levels increasing by 6.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!