Metagenomic next-generation sequencing to identify pathogens and cancer in lung biopsy tissue.

EBioMedicine

Institute of Medical Technology, Peking University Health Science Center, Beijing 100191, China; Department of Clinical Laboratory, Peking University People's Hospital, Beijing 100044, China. Electronic address:

Published: November 2021

Background: Lung biopsy tissue samples can be used for infection detection and cancer diagnosis. Metagenomic next-generation sequencing (mNGS) has the potential to further improve diagnosis.

Methods: From July 2018 to May 2020, lung biopsy samples of 133 patients with suspected pulmonary infection or abnormal imaging findings were collected and subjected to clinical microbiological testing, Illumina and Nanopore sequencing to identify pathogens. The neural networks were pretrained by extracting features of human reads from 2,095 metagenomic next-generation sequencing results, and the human reads of lung biopsy samples were entered into the validated pipeline to predict the risk of cancer.

Findings: Based on the pathogen-cancer detection pipeline, the Illumina platform showed 77·6% sensitivity and 97·6% specificity compared to the composite reference standard for infection diagnosis. However, the Nanopore platform showed 34·7% sensitivity and 98·7% specificity. mNGS identified more fungi, which was confirmed by subsequent pathological examination. M. tuberculosis complex was weakly detected. For cancer detection, compared with histology, the Illumina platform showed 83·7% sensitivity and 97·6% specificity, diagnosing an additional 36 cancer patients, of whom half had abnormal imaging findings (pulmonary shadow, space-occupying lesions, or nodules).

Interpretation: For the first time, we have established a pipeline to simultaneously detect pathogens and cancer based on Illumina sequencing of lung biopsy tissue. This pipeline efficiently diagnosed cancer in patients with abnormal imaging findings.

Funding: This work was supported by the National Key Research and Development Program of China and National Natural Science Foundation of China.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8554462PMC
http://dx.doi.org/10.1016/j.ebiom.2021.103639DOI Listing

Publication Analysis

Top Keywords

lung biopsy
20
metagenomic next-generation
12
next-generation sequencing
12
biopsy tissue
12
abnormal imaging
12
sequencing identify
8
identify pathogens
8
pathogens cancer
8
biopsy samples
8
imaging findings
8

Similar Publications

Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.

View Article and Find Full Text PDF

Background: Real-world data regarding patients with non-small cell lung cancer (NSCLC) with EGFR exon 20 insertion (ex20ins) mutations receiving mobocertinib are limited. This study describes these patients' characteristics and outcomes.

Methods: A chart review was conducted across three countries (Canada, France, and Hong Kong), abstracting data from eligible patients (NCT05207423).

View Article and Find Full Text PDF

The Importance of Lung Innate Immunity During Health and Disease.

Pathogens

January 2025

Division of Respiratory Medicine, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe 650-0017, Japan.

The lung is a vital organ for the body as the main source of oxygen input. Importantly, it is also an internal organ that has direct contact with the outside world. Innate immunity is a vital protective system in various organs, whereas, in the case of the lung, it helps maintain a healthy, functioning cellular and molecular environment and prevents any overt damage caused by pathogens or other inflammatory processes.

View Article and Find Full Text PDF

The intratumoral microbiome plays a significant role in many cancers, such as lung, pancreatic, and colorectal cancer. Pancreatic cancer (PC) is one of the most lethal malignancies and is often diagnosed at advanced stages. , an anaerobic Gram-negative bacterium primarily residing in the oral cavity, has garnered significant attention for its emerging role in several extra-oral human diseases and, lately, in pancreatic cancer progression and prognosis.

View Article and Find Full Text PDF

Predicting drug-target interactions (DTIs) is a crucial step in the development of new drugs and drug repurposing. In this paper, we propose a novel drug-target prediction model called MCF-DTI. The model utilizes the SMILES representation of drugs and the sequence features of targets, employing a multi-scale convolutional neural network (MSCNN) with parallel shared-weight modules to extract features from the drug side.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!