Nowadays consumers have constantly exposed to nanoparticles (NPs) ingestion. Although the impact of NPs on the human has been studied by many authors, they did not consider the influence of food matrix components on bioaccessibility of NPs. This fact has encouraged us to investigate the influence of different food components on NPs. The investigation has been carried out to assess the influence of main food components on the MNPs (metallic nanoparticles) fate during the in vitro gastrointestinal simulation. The experiments have been carried out with the single-particle inductively coupled plasma mass spectrometry (SP-ICP-MS) as a tool for quantitative and qualitative analysis and the scanning transmission electron microscopy (STEM) as a means of qualitative analysis. The influence of various food components on NPs has been confirmed and it may be concluded that the matrix has an impact on the size and form of NPs. The presence of food components significantly changes the behaviour of NPs during simulated gastrointestinal digestion. Possible explanations of the influence of main nutrient groups, i.e. lipids, protein, salts, saccharides and vitamins on NPs have been proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2021.131391 | DOI Listing |
PLoS One
January 2025
School of Pharmacy, Bandung Institute of Technology, Bandung, Indonesia.
Gastric ulcer is a common disorder of the digestive system. The combination of turmeric and honey is known to treat stomach ulcers. However, curcumin, an active component in turmeric, has limitations, i.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Agriculture, Food and Nutrition, Weihenstephan-Triesdorf University of Applied Sciences, Weidenbach, Germany.
As global demand for meat continues to rise, alternative and sustainable methods of production are being explored. Cultivated meat (CM) is one such alternative that holds potential for sustainable production with less environmental impact. This study develops an approach to evaluate CM production based on agricultural feedstock.
View Article and Find Full Text PDFNutr Rev
January 2025
College of Education, Psychology and Social Work, Flinders University, Bedford Park, SA 5001, Australia.
The purpose of the present narrative review was to propose a unifying generalized conceptual model of mechanisms and processes in appetite self-regulation (ASR) in childhood. Appetite self-regulation, along with other domains of self-regulation, develops across childhood and contributes to energy intake and balance, diet quality, weight, and therefore long-term health outcomes. There have been efforts to conceptualize and measure components of ASR and associated processes/mechanisms, but, at present, there is no unifying conceptualization of ASR in childhood.
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Canterbury Research Centre, The New Zealand Institute for Plant and Food Research Limited, Lincoln, 8152, New Zealand.
The identification of sex pheromones in native New Zealand moths has been limited, largely due to their minimal pest impact on agricultural ecosystems. The kōwhai moth, Uresiphita polygonalis maorialis, a native crambid, is known for its herbivory on Sophora spp. and Lupinus arboreus leaves.
View Article and Find Full Text PDFCompr Rev Food Sci Food Saf
January 2025
Department of Forest Biomaterials, North Carolina State University, Raleigh, North Carolina, USA.
This review focuses on antimicrobial packaging for food safety, critically examining the activity and efficacy of cannabinoids against commonly found microorganisms and exploring their antimicrobial mechanisms. Specifically, the review considers cannabinoids derived from industrial hemp plants, which are characterized by low levels of psychoactive components. It also outlines viable strategies to control the sustained release of cannabinoids from the packaging, enabling extended storage and enhanced safety of food products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!