This article studies the distributed dimensionality reduction fusion estimation problem with communication delays for a class of cyber-physical systems (CPSs). The raw measurements are preprocessed in each sink node to obtain the local optimal estimate (LOE) of a CPS, and the compressed LOE under dimensionality reduction encounters with communication delays during the transmission. Under this case, a mathematical model with compensation strategy is proposed to characterize the dimensionality reduction and communication delays. This model also has the property of reducing the information loss caused by the dimensionality reduction and delays. Based on this model, a recursive distributed Kalman fusion estimator (DKFE) is derived by optimal weighted fusion criterion in the linear minimum variance sense. A stability condition for the DKFE, which can be easily verified by the exiting software, is derived. In addition, this condition can guarantee that the estimation error covariance matrix of the DKFE converges to the unique steady-state matrix for any initial values and, thus, the steady-state DKFE (SDKFE) is given. Note that the computational complexity of the SDKFE is much lower than that of the DKFE. Moreover, a probability selection criterion for determining the dimensionality reduction strategy is also presented to guarantee the stability of the DKFE. Two illustrative examples are given to show the advantage and effectiveness of the proposed methods.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TCYB.2021.3119461 | DOI Listing |
Cureus
December 2024
Physics and Engineering, London Regional Cancer Program, London, CAN.
Introduction: Radiation may unintentionally injure myocardial tissue, potentially leading to radiation-induced cardiac disease (RICD), with the net benefit of non-small cell lung cancer (NSCLC) radiotherapy (RT) due to the proximity of the lung and heart. RTOG-0617 showed a greater reduction in overall survival (OS) comparing higher doses to standard radiation doses in NSCLC RT. VHeart has been reported as an OS predictor in the first- and fifth-year follow-ups.
View Article and Find Full Text PDFHeliyon
January 2025
Nuclear Chemistry Division, Department of Chemistry, Atomic Energy Commission, P. O. Box: 9061, Damascus, Syrian Arab Republic.
Molecular scale information is needed to understand ions coordination to mineral surfaces and consequently to accelerate the design of improved adsorbents. The present work reports on the use of two-dimensional correlation Fourier Transform infra-red spectroscopy (2D-COS-FTIR) and hetero 2D-COS-FTIR- X-ray diffraction (XRD) to probe the mechanism of Cr(VI) removal from aqueous solutions by activated carbon (AC) and its composite with PWO (AC-composite). The adsorption data at an initial Cr(VI) concentration of 320 mg L (320 ppm) revealed maximum adsorption capacities of 65 mg g for AC and 73 mg g for AC-composite, corresponding to removal percentages of 83 % and 94 %, respectively.
View Article and Find Full Text PDFClin Transl Radiat Oncol
March 2025
Radiation Oncology Department, Cancer Institute Hospital, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.
Background And Purpose: In lung stereotactic body radiation therapy (SBRT) using a breath-holding technique, displacement of tumor during breath-holding is rarely considered. This study used four-dimensional (4D) dose calculation with cine computed tomography (CT) to evaluate the impact of unexpected tumor position displacement during breath-holding on the target dose of lung volumetric modulated arc therapy (VMAT)-SBRT.
Materials And Methods: This study included 20 cases for which tumor position displacement during end-exhalation breath-holding (range: 0.
ACS Appl Mater Interfaces
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing 210009, P. R. China.
3D printing efficiency, as a key indicator of additive manufacturing technology, directly affects its competitiveness in rapid prototyping, small batch production, and even large-scale industrial applications. Compared with traditional manufacturing methods, the high efficiency of 3D printing is often considered a bottleneck, hindering its application across various fields. Herein, a versatile and efficient strategy is proposed, namely, the dimensional reduction printing (DRP) process, to break the obstacle of high efficiency of 3D printing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Industrial Engineering/Graduate School of Data Science/Research Center for Electrical and Information Science, Seoul National University of Science and Technology, Seoul, South Korea.
Electric load forecasting is crucial in the planning and operating electric power companies. It has evolved from statistical methods to artificial intelligence-based techniques that use machine learning models. In this study, we investigate short-term load forecasting (STLF) for large-scale electricity usage datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!