Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecular Dynamics simulations are often used in drug design. However, such simulations do not account for the physiological environment of the receptor; hence overlook its impact on biomolecular interactions. To address this lacuna, we identified three objectives to pursue - develop models of physiological environment, study a drug-receptor complex in such environments, and identify methods to analyze these complicated simulations. Two novel physiological models were developed and studied. The first, called 'm10', comprises of 10 of the most abundant cytoplasmic metabolites at physiological concentrations. The second, called 'phy', supplements m10 with an additional crowder protein to elicit macromolecular crowding effect. The main protease (M) of SARS-CoV-2, being essential for viral replication, is an attractive drug target for COVID-19. Hence, we chose M docked with multiple drugs as our model drug-receptor system. With a plethora of compounds, physiological systems can be exceedingly large and complex. A novel Spark-based software (SparkTraj) was developed to rapidly analyze non-specific contacts and water interactions. Our study shows that crowding enhances the difference in the dynamics of apo- vs drug-bound complexes. Metabolites, at times as a cluster, were seen interacting with the protease, drugs, and binding sites in drug-free receptor. Except one that to an adjacent pocket in phy, the drugs remained in their respective pockets in all simulations. Given these observations, we hope that the models and approach presented here would help the optimization, evaluation, and selection of potential drugs. Generic biomolecular dynamics could also benefit from such models and tools.Communicated by Ramaswamy H. Sarma.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/07391102.2021.1993342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!