Metal chalcophosphates, MPQ (M = transition metals; Q = chalcogen), are notable among the van der Waals materials family for their potential magnetic ordering that can be tuned with an appropriate choice of the metal or chalcogen. However, there has not been a systematic investigation of the basic structural evolution in these systems with alloying of the crystal subunits due to the challenge in the diffusion process of mixing different metal cations in the octahedral sites of MPQ materials. In this work, the PS flux method was used to enable the synthesis of a multilayered mixed metal thiophosphate FeCoPS ( = 0, 0.25, 1, 1.75, and 2) system. Here, we studied the structural, vibrational, and electronic fingerprints of this mixed MPQ system. Structural and elemental analyses indicate a homogeneous stoichiometry averaged through the sample over multiple layers of FeCoPS compounds. It was observed that there is a correlation between the intensity of specific phonon modes and the alloying concentration. The increasing Co alloying concentration shows direct relations to the in-plane [PS] and out-of-plane P-P dimer vibrations. Interestingly, an unusual nonlinear electronic structure dependence on the metal alloying ratio is found and confirmed by two distinct work functions within the FeCoPS system. We believe this work provides a fundamental structural framework for mixed metal thiophosphate systems, which may assist in future studies on electronic and magnetic applications of this emerging class of binary cation materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.1c02635DOI Listing

Publication Analysis

Top Keywords

mixed metal
12
metal thiophosphate
12
thiophosphate fecops
8
structural evolution
8
alloying concentration
8
metal
6
structural
5
mixed
4
fecops
4
fecops role
4

Similar Publications

Electron transfer in polysaccharide monooxygenase catalysis.

Proc Natl Acad Sci U S A

January 2025

California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.

Polysaccharide monooxygenase (PMO) catalysis involves the chemically difficult hydroxylation of unactivated C-H bonds in carbohydrates. The reaction requires reducing equivalents and will utilize either oxygen or hydrogen peroxide as a cosubstrate. Two key mechanistic questions are addressed here: 1) How does the enzyme regulate the timely and tightly controlled electron delivery to the mononuclear copper active site, especially when bound substrate occludes the active site? and 2) How does this electron delivery differ when utilizing oxygen or hydrogen peroxide as a cosubstrate? Using a computational approach, potential paths of electron transfer (ET) to the active site copper ion were identified in a representative AA9 family PMO from (PMO9E).

View Article and Find Full Text PDF

Large enhancement of ferroelectric properties of perovskite oxides via nitrogen incorporation.

Sci Adv

January 2025

State Key Laboratory of Advanced Welding and Joining of Materials and Structures, School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China.

Perovskite oxides have a wide variety of physical properties that make them promising candidates for versatile technological applications including nonvolatile memory and logic devices. Chemical tuning of those properties has been achieved, to the greatest extent, by cation-site substitution, while anion substitution is much less explored due to the difficulty in synthesizing high-quality, mixed-anion compounds. Here, nitrogen-incorporated BaTiO thin films have been synthesized by reactive pulsed-laser deposition in a nitrogen growth atmosphere.

View Article and Find Full Text PDF

Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP).

View Article and Find Full Text PDF

Functional pincer ligands that engage in metal-ligand cooperativity and/or are capable of redox non-innocence have found a great deal of success in catalysis. These two properties may be found in metal complexes of the 2,6-bis(pyrazol-3-yl)pyridine (bpp) ligands. With this goal in mind, we have attempted the coordination of 2,6-bis(5-trifluoromethylpyrazol-3-yl)pyridine (LCF3) and its Bu analogue 2,6-bis(5--butylpyrazol-3-yl)pyridine (LtBu) to Mo(0) by reactions with mixed phosphine/carbonyl complexes [Mo(CO)(MeCN)(PMePh)] 1-3 (1 ≤ ≤ 3).

View Article and Find Full Text PDF

Background: The Latarjet and other bony augmentation procedures are commonly used to treat anterior shoulder instability in the setting of significant glenoid bone loss. Although several fixation strategies have been reported, the biomechanical strength of these techniques remains poorly understood.

Purpose: To perform a systematic review of the biomechanical strength of glenoid bony augmentation procedures for anterior shoulder instability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!