Purpose: This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training AI-methods. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to different criteria.
Methods: We developed an automated analysis pipeline, the LungQuant system, based on a cascade of two U-nets. The first one (U-net[Formula: see text]) is devoted to the identification of the lung parenchyma; the second one (U-net[Formula: see text]) acts on a bounding box enclosing the segmented lungs to identify the areas affected by COVID-19 lesions. Different public datasets were used to train the U-nets and to evaluate their segmentation performances, which have been quantified in terms of the Dice Similarity Coefficients. The accuracy in predicting the CT-Severity Score (CT-SS) of the LungQuant system has been also evaluated.
Results: Both the volumetric DSC (vDSC) and the accuracy showed a dependency on the annotation quality of the released data samples. On an independent dataset (COVID-19-CT-Seg), both the vDSC and the surface DSC (sDSC) were measured between the masks predicted by LungQuant system and the reference ones. The vDSC (sDSC) values of 0.95±0.01 and 0.66±0.13 (0.95±0.02 and 0.76±0.18, with 5 mm tolerance) were obtained for the segmentation of lungs and COVID-19 lesions, respectively. The system achieved an accuracy of 90% in CT-SS identification on this benchmark dataset.
Conclusion: We analysed the impact of using data samples with different annotation criteria in training an AI-based quantification system for pulmonary involvement in COVID-19 pneumonia. In terms of vDSC measures, the U-net segmentation strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS can be accurately predicted on independent test sets, demonstrating the satisfactory generalization ability of the LungQuant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8547130 | PMC |
http://dx.doi.org/10.1007/s11548-021-02501-2 | DOI Listing |
Eur Phys J Plus
April 2023
Pisa Division, National Institute for Nuclear Physics (INFN), Pisa, Italy.
Computed tomography (CT) scans are used to evaluate the severity of lung involvement in patients affected by COVID-19 pneumonia. Here, we present an improved version of the automatic segmentation software ( 2), which implements a cascade of three deep neural networks (DNNs) to segment the lungs and the lung lesions associated with COVID-19 pneumonia. The first network (BB-net) defines a bounding box enclosing the lungs, the second one (U-net ) outputs the mask of the lungs, and the final one (U-net ) generates the mask of the COVID-19 lesions.
View Article and Find Full Text PDFEur Radiol Exp
April 2023
Pisa Division, National Institute for Nuclear Physics, Pisa, Italy.
Background: The role of computed tomography (CT) in the diagnosis and characterization of coronavirus disease 2019 (COVID-19) pneumonia has been widely recognized. We evaluated the performance of a software for quantitative analysis of chest CT, the LungQuant system, by comparing its results with independent visual evaluations by a group of 14 clinical experts. The aim of this work is to evaluate the ability of the automated tool to extract quantitative information from lung CT, relevant for the design of a diagnosis support model.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
February 2022
National Institute of Nuclear Physics (INFN), Pisa division, Pisa, Italy.
Purpose: This study aims at exploiting artificial intelligence (AI) for the identification, segmentation and quantification of COVID-19 pulmonary lesions. The limited data availability and the annotation quality are relevant factors in training AI-methods. We investigated the effects of using multiple datasets, heterogeneously populated and annotated according to different criteria.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!