Purpose: Docosahexaenoyl difluorodeoxycytidine (DHA-dFdC) is an amide with potent, broad-spectrum antitumor activity. In the present study, DHA-dFdC's ability to induce immunogenic cell death (ICD) was tested using CT26 mouse colorectal cancer cells, an established cell line commonly used for identifying ICD inducers, as well as Panc-02 mouse pancreatic cancer cells.

Methods: The three primary surrogate markers of ICD (i.e., calreticulin (CRT) surface translocation, ATP release, and high mobility group box 1 protein (HMGB1) release) were measured in vitro. To confirm DHA-dFdC's ability to induce ICD in vivo, the gold standard mouse vaccination studies were conducted using both CT26 and Panc-02 models. Additionally, the effect of DHA-dFdC on tumor response to anti-programmed cell death protein 1 monoclonal antibody (anti-PD-1 mAb) were tested in mice with pre-established Panc-02 tumors. RNA sequencing experiments were conducted on PANC-1 human pancreatic cancer cells treated with DHA-dFdC, dFdC, or vehicle control in vitro.

Results: DHA-dFdC elicited CRT surface translocation and ATP and HMGB1 release in both cell lines. Immunization of mice with CT26 or Panc-02 cells pretreated with DHA-dFdC prevented or delayed the development of corresponding secondary live challenge tumor. DHA-dFdC enabled Panc-02 tumors to respond to anti-PD-1 mAb. RNA sequencing experiments revealed that DHA-dFdC and dFdC differentially impacted genes related to the KRAS, TP53, and inflammatory pathways, and DHA-dFdC enriched for the unfolded protein response (UPR) compared to control, providing insight into DHA-dFdC's potential mechanism of inducing ICD.

Conclusion: DHA-dFdC is a bona fide ICD inducer and can render pancreatic tumors responsive to anti-PD-1 mAb therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8741741PMC
http://dx.doi.org/10.1007/s00280-021-04367-2DOI Listing

Publication Analysis

Top Keywords

cell death
12
anti-pd-1 mab
12
dha-dfdc
9
immunogenic cell
8
dha-dfdc's ability
8
ability induce
8
cancer cells
8
pancreatic cancer
8
crt surface
8
surface translocation
8

Similar Publications

Therapeutic Effects of GDF6-Overexpressing Mesenchymal Stem Cells through Upregulation of the GDF15/SIRT1 Axis in Age-Related Hearing Loss.

Front Biosci (Landmark Ed)

January 2025

Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, 330006 Nanchang, Jiangxi, China.

Background: It has been reported the therapeutic effects of mesenchymal stem cells (MSCs) on hearing loss. This study explored the therapeutic effects of growth differentiation factor 6 (GDF6) overexpression-induced MSCs (MSCs-GDF6) on age-related hearing loss (ARHL) and its underlying mechanisms.

Methods: Reverse transcription-quantitative PCR and western blotting were used to evaluate gene expression.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Introduction: The effects of remimazolam (Re) in combination with andrographolide (AP) on learning, memory, and motor abilities in rats following cardiopulmonary bypass (CPB) surgery were studied.

Methods: We hypothesized that the combination of Re and AP could improve postoperative cognitive dysfunction (POCD) in rats after CPB by modulating nervous system inflammation. Cognitive function was assessed using the Morris Water Maze test, and the concentrations of tumor necrosis factor alpha (TNF-α), interleukin-1 beta (IL-1β), and interleukin-6 (IL-6) in serum were measured by enzyme-linked immunosorbent assay (ELISA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!