Outcomes and costs of coronavirus disease (COVID-19) contact tracing are limited. During March-May 2020, we constructed transmission chains from 184 index cases and 1,499 contacts in Salt Lake County, Utah, USA, to assess outcomes and estimate staff time and salaries. We estimated 1,102 staff hours and $29,234 spent investigating index cases and contacts. Among contacts, 374 (25%) had COVID-19; secondary case detection rate was ≈31% among first-generation contacts, ≈16% among second- and third-generation contacts, and ≈12% among fourth-, fifth-, and sixth-generation contacts. At initial interview, 51% (187/370) of contacts were COVID-19-positive; 35% (98/277) became positive during 14-day quarantine. Median time from symptom onset to investigation was 7 days for index cases and 4 days for first-generation contacts. Contact tracing reduced the number of cases between contact generations and time between symptom onset and investigation but required substantial resources. Our findings can help jurisdictions allocate resources for contact tracing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8632199PMC
http://dx.doi.org/10.3201/eid2712.210505DOI Listing

Publication Analysis

Top Keywords

contact tracing
16
coronavirus disease
8
salt lake
8
lake county
8
county utah
8
utah usa
8
march-may 2020
8
contacts
8
first-generation contacts
8
time symptom
8

Similar Publications

Background: Rift Valley Fever (RVF) is a mosquito-borne zoonotic disease that poses a serious threat to both humans and livestock across various regions, particularly in Africa, the Arabian Peninsula, and parts of the Indian Ocean Islands. This study seeks to analyze the spatial and temporal distribution and trends of RVF outbreaks within the East African Community (EAC) countries, offering insights into the patterns and progression of these outbreaks in the region.

Methods: We conducted a retrospective analysis of the Program for Monitoring Emerging Diseases (ProMed), a digital, event-based disease surveillance system, to identify reports of outbreak events in Uganda, Kenya, Rwanda, Burundi, Tanzania, and South Sudan from 2010 to 2024.

View Article and Find Full Text PDF

Few sources have reported empirical social contact data from resource-poor settings. To address this shortfall, we recruited 1,363 participants from rural and urban areas of Mozambique during the COVID-19 pandemic, determining age, sex, and relation to the contact for each person. Participants reported a mean of 8.

View Article and Find Full Text PDF

We collected social contact data in Greece to measure contact patterns before (January 2020) and during the COVID-19 pandemic (March 2020-October 2021) and assess the effects of social distancing over time. During lockdowns, mean daily contacts decreased to 2.8-5.

View Article and Find Full Text PDF

Tracking cryptic SARS-CoV-2 hospital outbreak through quasispecies analysis.

Virol J

December 2024

Department of Molecular and Translational Medicine, Section of Microbiology, University of Brescia, Piazzale Spedali Civili, 1, Brescia, 25123, Italy.

Background: Since the beginning of the pandemic, contact tracing has been one of the most relevant issues to understand SARS-CoV-2 transmission dynamics and, in this context, the analysis of quasispecies may turn out to be a useful tool for outbreak investigations. Analysis of the intra-host single nucleotide variants (iSNVs) found in the nsp2, ORF3, and ORF7 genes of SARS-CoV-2 was conducted in order to correctly identify virus transmission chain among patients hospitalized in Brescia Civic Hospital.

Methods: During the period between August and October 2023, 13 nasopharyngeal specimens, collected from patients admitted to Brescia Civic Hospital, were tested for SARS-CoV-2 positivity and molecularly characterized.

View Article and Find Full Text PDF

This article investigates the escalating occurrence of zoonotic diseases in Africa, attributing their spread to climate change and human activities. Africa's unique combination of biodiversity, reliance on animal husbandry, and swift urbanization heightens its susceptibility. Climate change disrupts ecosystems and animal habitats, intensifying human-wildlife interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!