A molecular rotational resonance spectroscopy method for measuring the enantiomeric excess of pantolactone, an intermediate in the synthesis of panthenol and pantothenic acid, is presented. The enantiomers are distinguished via complexation with a small chiral tag molecule, which produces diastereomeric complexes in the pulsed jet expansion used to inject the sample into the spectrometer. These complexes have distinct moments of inertia, so their spectra are resolved by MRR spectroscopy. Quantitative enantiomeric excess (EE) measurements are made by taking the ratio of normalized complex signal levels when a chiral tag sample of high, known EE is used, while the absolute configuration of the sample can be determined from electronic structure calculations of the complex geometries. These measurements can be performed without the need for reference samples with known enantiopurity. Two instruments were used in the analysis. A broadband, chirped-pulse spectrometer is used to perform structural characterization of the complexes. The broadband spectrometer is also used to determine the EE; however, this approach requires relatively long measurement times. A targeted MRR spectrometer is also used to demonstrate EE analysis with approximately 15-min sample-to-sample cycle time. The quantitative accuracy of the method is demonstrated by comparison with chiral gas chromatography and through the measurement of a series of reference samples prepared from mixtures of (R)-pantolactone and (S)-pantolactone samples of known EE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chir.23379 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan.
Many bacteria swim in liquid or swarm on surface using the flagellum rotated by a motor driven by specific ion flow. The motor consists of the rotor and stator, and the stator converts the energy of ion flow to mechanical rotation. However, the ion pathway and the mechanism of stator rotation coupled with specific ion flow are still obscure.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands.
is a Gram-positive bacterium that is responsible for severe nosocomial infections. The rise of multidrug-resistant strains, which can pose significant health threats, prompts the development of new treatment interventions, and much attention has been directed at the development of prophylactic and therapeutic vaccination strategies. Capsular polysaccharides (CPs) are key protective elements of the cell wall and have been proposed as promising candidate antigens.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
Shanghai Engineering Research Centre of Ultra Precision Optical Manufacturing, Department of Optical Science and Engineering, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Developing switchable and multifunctional metasurfaces is essential for high-integration photonics. However, most previous studies encountered challenges such as limited degrees of freedom, simple tuning of predefined functionality, and complicated control systems. Here, we develop a general strategy to construct switchable and multifunctional metasurfaces.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Kemerovo State University, Krasnaya 6, Kemerovo, 650000, Russia.
The compressibility of crystalline tetrabromophthalic anhydride (TBPA) and 1-ethyl-3-methylimidazolium nitrate (EMN) was studied based on density functional theory including dispersion interactions at pressures below 1 GPa. It is found for the first time that EMN demonstrates negative linear compressibility (NLC) up to ∼0.15 GPa, whereas TBPA shows significant NLC at pressures higher than ∼0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Department of Chemical Engineering, National Institute of Technology, Nara College, Yamatokoriyama, Nara 639-1080, Japan.
This study focuses on two types of phosphonium cation-based ionic liquids (P-ILs) with different alkyl chains: triethylalkylphosphonium (P222R) and tributylalkylphosphonium (P444R) cations. Broadband dielectric spectroscopy showed that the translational motion of the ions accelerated with an increasing number of alkyl chains by coupling with their rotational motion in both P-ILs. Raman spectroscopy revealed that P222R cations, despite dielectric similarities to P444R cations, can form all-trans conformations and cation-rich nanodomains because they have a relatively polar, short alkyl chain moiety with a central P atom and less-polar alkyl chains than those of P444R cations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!