The extracellular matrix (ECM) guides and constrains the shape of the nervous system. In , DIG-1 is a giant ECM component that is required for fasciculation of sensory dendrites during development and for maintenance of axon positions throughout life. We identified four novel alleles of in three independent screens for mutants affecting disparate aspects of neuronal and glial morphogenesis. First, we find that disruption of DIG-1 causes fragmentation of the amphid sheath glial cell in larvae and young adults. Second, it causes severing of the BAG sensory dendrite from its terminus at the nose tip, apparently due to breakage of the dendrite as animals reach adulthood. Third, it causes embryonic defects in dendrite fasciculation in inner labial (IL2) sensory neurons, as previously reported, as well as rare defects in IL2 dendrite extension that are enhanced by loss of the apical ECM component DYF-7, suggesting that apical and basolateral ECM contribute separately to dendrite extension. Our results highlight novel roles for DIG-1 in maintaining the cellular integrity of neurons and glia, possibly by creating a barrier between structures in the nervous system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544517PMC
http://dx.doi.org/10.3390/jdb9040042DOI Listing

Publication Analysis

Top Keywords

dendrite extension
12
extracellular matrix
8
breakage dendrite
8
nervous system
8
ecm component
8
dendrite
7
loss extracellular
4
matrix protein
4
dig-1
4
protein dig-1
4

Similar Publications

Article Synopsis
  • The study focused on dissimilar laser welding of AISI 1060 carbon steel and Duplex Stainless Steel 2205, using both experimental and numerical methods to analyze the impact of welding parameters.
  • The increase in laser power significantly influenced the melt pool depth, which rose from 0.4 mm to 1.4 mm when power was ramped up from 250 to 450 W, and the resultant microstructure varied between the two materials with distinct solidification patterns.
  • Tensile test results indicated that the carbon steel side exhibited brittle fracture, while the Duplex Stainless Steel showed a ductile fracture, highlighting the differing mechanical properties due to their respective microstructures and the transition towards ductility with increased laser energy density.
View Article and Find Full Text PDF

Engineering and construction of multi-functional Janus separator for high-stability Li-CO battery.

J Colloid Interface Sci

December 2024

National and Local Joint Engineering Research Center for Lithium-ion Batteries and Materials Preparation Technology, Key Laboratory of Advanced Battery Materials of Yunnan Province, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China. Electronic address:

Due to the high theoretical energy density, lithium-carbon dioxide (Li-CO) batteries provide unique advantages when using CO to generate electricity. However, the issues with lithium dendrite generated by uneven deposition and quick cathode passivation continue to impede the development of Li-CO batteries. In this work, a Janus separator with dual functionalities is created using an in-situ growth and hydrothermal technique.

View Article and Find Full Text PDF

Introduction: Thymic stromal lymphopoietin (TSLP) is a master regulator of allergic inflammation against pathogens at barrier surfaces of the lung, skin, and gut. However, aberrant TSLP activity is implicated in various allergic, chronic inflammation and autoimmune diseases and cancers. Biologics drugs neutralizing excess TSLP activity represented by tezepelumab have been approved for severe asthma and are being evaluated for the treatments of other TSLP-mediated diseases.

View Article and Find Full Text PDF

Polysulfide shuttling and dendrite growth are two primary challenges that significantly limit the practical applications of lithium-sulfur batteries (LSBs). Herein, a three-in-one strategy for a separator based on a localized electrostatic field is demonstrated to simultaneously achieve shuttle inhibition of polysulfides, catalytic activation of the Li-S reaction, and dendrite-free plating of lithium ions. Specifically, an interlayer of polyacrylonitrile nanofiber (PNF) incorporating poled BaTiO (PBTO) particles and coating with a layer of MoS (PBTO@PNF-MoS) is developed on the PP separator.

View Article and Find Full Text PDF

Molecular cloning, expression analysis, and functional characterization of an interleukin-15 like gene in common carp ( L.).

Front Immunol

December 2024

Engineering Lab of Henan Province for Aquatic Animal Disease Control, College of Fisheries, Henan Normal University, Xinxiang, Henan, China.

Article Synopsis
  • Interleukin-15 (IL-15) is an important cytokine that regulates the immune system and is produced by various immune cells, playing a key role in the activation and survival of natural killer cells and CD8 T cells.
  • Researchers cloned and studied an IL-15 homologue called IL-15L in common carp, finding it expressed in multiple tissues, particularly in the intestine, and significantly increased during infections.
  • The study showed that overexpressing IL-15L enhanced immune responses, improved the activation of immune cells, and reduced bacterial loads in infected carp, suggesting its critical role in fish immunology.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!