The foams stabilized by nanoparticles (NPs), water-soluble polymers, and surfactants have potential application prospects in the development of new, environmentally friendly firefighting foams. In the present study, a gel foam containing a water-soluble polymer (xanthan gum, XG), hydrophilic silica NPs, hydrocarbon surfactant (SDS), and fluorocarbon surfactant (FS-50) were prepared. The surface activity, conductivity, viscosity, and foaming ability of foam dispersions were characterized. The gel foam stability under a radiation heat source and temperature distribution in the vertical foam layer were evaluated systematically. The results show that the addition of NPs and XG has a significant effect on the foaming ability, viscosity and foam thermal stability, but has a very subtle effect on the conductivity and surface activity. The foaming ability of the FS-50/SDS solution was enhanced by the addition of NPs, but decreased with increasing the XG concentration. The thermal stability of the foams stabilized by SDS/FS-50/NPs/XG increased with the addition of NPs and increasing XG concentration. Foam drainage and coarsening were significantly decelerated by the addition of NPs and XG. The slower foam drainage and coarsening are the main reason for the intensified foam thermal stability. The results obtained from this study can provide guidance for developing new firefighting foams.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544548PMC
http://dx.doi.org/10.3390/gels7040179DOI Listing

Publication Analysis

Top Keywords

thermal stability
16
addition nps
16
foams stabilized
12
foaming ability
12
xanthan gum
8
firefighting foams
8
foam
8
gel foam
8
surface activity
8
foam thermal
8

Similar Publications

This study explores the impact of natural deep eutectic solvents (NADES) on the structure and functionality of treebean (Parkia timoriana) seed protein, a novel approach to enhancing protein stability and functionality for sustainable bioprocessing. The research aims to evaluate the dynamic interactions between protein and choline chloride-sugar-based NADES, focusing on their effects on thermal properties, emulsification behaviour, and rheological characteristics. NADES were formulated using different sugars, and protein-NADES dispersions were analysed for their physicochemical and functional properties.

View Article and Find Full Text PDF

Powder-based fire extinguishing agents have become a kind of promising substitutes for halon extinguishing agents in civil aircrafts. However, their storage lifespan, significantly influenced by the thermal aging, emerges as a crucial yet overlooked aspect for aviation use. This study investigates the effects of thermal aging cycles on various parameters of ordinary dry powder extinguishing agent (ODPEA) and novel superhydrophobic and oleophobic ultra-fine dry powder extinguishing agent (SHOU DPEA), including surface microscopic morphology, D90 (the diameter at which 90% of the cumulative volume of particles are equal to or smaller than this value), chemical structure, hydrophobic and oleophobic angles, flowability, extinguishing time and effectiveness.

View Article and Find Full Text PDF

Thermostable terahertz metasurface enabled by graphene assembly film for plasmon-induced transparency.

Sci Rep

January 2025

State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, 430200, People's Republic of China.

With the increasing demand on high-density integration and better performance of micro-nano optoelectronic devices, the operation temperatures are expected to significantly increase under some extreme conditions, posing a risk of degradation to metal-based micro-/nano-structured metasurfaces due to their low tolerance to high temperature. Therefore, it is urgent to find new materials with high-conductivity and excellent high-temperature resistance to replace traditional micro-nano metal structures. Herein, we have proposed and fabricated a thermally stable graphene assembly film (GAF), which is calcined at ultra-high temperature (~ 3000 ℃) during the reduction of graphite oxide (GO).

View Article and Find Full Text PDF

Utilization of Chlorella vulgaris methyl ester blend with diethyl ether to mitigate emissions of an unaltered single cylinder ci engine.

Environ Sci Pollut Res Int

January 2025

Engine Testing Laboratory, Department of Automobile Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Tamil Nadu, India.

The present work emphasizes the viability of methyl ester production, characterization, and utilization of third-generation biofuel from Chlorella vulgaris microalgae. The presence of methyl oleate (CHO) in the Chlorella vulgaris methyl ester (CVME) algae signifies the existence of higher oxidation stability and prone to peroxidation. The single-stage transesterified CVME algae contains majorly (C-H) functional group trailed by (C = O), (C-O), (O-CH), (C-O-C) with the elemental compositions of 66.

View Article and Find Full Text PDF

Influence of chitosan encapsulation on functionality and stability of astaxanthin nanoemulsion fabricated using high pressure homogenizer.

Int J Biol Macromol

January 2025

Department of Food Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. Electronic address:

Astaxanthin is a natural antioxidant substance, but it can be easily degraded by light, heat, and oxidation. One solution to overcome these problems is to transform astaxanthin into nanoemulsion within a protective matrix produced during an encapsulation process. In this study astaxanthin nanoemulsion (ANE) and chitosan (CS) incorporated with ANE (CS-ANE) were fabricated using high-pressure homogenizer (HPH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!