Application-oriented hydrogel properties can be obtained by modifying the synthesis conditions of the materials. The purpose of this study is to achieve customized properties for sensing applications of hydrogel membranes based on poly(2-hydroxyethyl methacrylate), HEMA and N,N-dimethylacrylamide, DMAa. Copolymer p(HEMA-co-DMAa) hydrogels were prepared by varying the DMAa monomer ratio from 0-100% in 20% increments. Hydrogel membranes were characterized by attenuated infrared spectroscopy. Swelling and sorption were evaluated using cation solutions. Copolymers were also synthesized on the gold surface of quartz crystal microbalances (QCM) as coating membranes. A proof of concept was conducted for approaching the design and development of QCM sensors based on P(DMAa-co-HEMA)-membranes. Results showed that the water and ion adsorption capacity of hydrogel membranes increased with higher DMAa content. Membranes are not selective to a specific location but did show different transport features with each cation. The QCM coated with the selected membrane presented linear relationships between resonance frequency and ions concentration in solution (10-120 ppm). As a consequence, hydrogel membranes obtained are promising for the development of future biosensing devices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8544454 | PMC |
http://dx.doi.org/10.3390/gels7040151 | DOI Listing |
Int J Biol Macromol
December 2024
Department of Orthopedics, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China; Tissue Repairing and Biotechnology Research Center, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, China. Electronic address:
Medical and conservative treatments for intervertebral disc degeneration (IDD) primarily focus on alleviating symptoms. However, effective curative therapies that promote disc regeneration remain lacking. Recent advancements in disc repair materials offer a potential solution, but identifying effective cytokines for regeneration and developing efficient drug delivery systems are crucial for success.
View Article and Find Full Text PDFFood Chem
December 2024
College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China. Electronic address:
Amyloid fibrils (AFs) are highly ordered nanostructures formed through the self-assembly of proteins under specific conditions. Due to their unique properties, AFs have garnered significant attention as biomaterials over the past decade. Nevertheless, the increasing reliance on animal proteins for AFs production raises sustainability concerns, highlighting the need for a transition to plant-based proteins as more environmentally friendly feedstocks.
View Article and Find Full Text PDFBiomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFNat Comput Sci
December 2024
Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
Soft materials underpin many domains of science and engineering, including soft robotics, structured fluids, and biological and particulate media. In response to applied mechanical, electromagnetic or chemical stimuli, such materials typically change shape, often dramatically. Predicting their structure is of great interest to facilitate design and mechanistic understanding, and can be cast as an optimization problem where a given energy function describing the physics of the material is minimized with respect to the shape of the domain and additional fields.
View Article and Find Full Text PDFGels
December 2024
The Department of Chemical Engineering and Biotechnology, Ariel University, Ariel 4070000, Israel.
Buccal drug delivery offers a promising alternative for avoiding gastrointestinal degradation and first-pass metabolism. However, enhancing the buccal epithelial barrier's permeability remains challenging. This study explores the effects of ethanolic extracts from (CM), (CMC), and (ORD) on buccal epithelium permeability in vitro using a TR146 cell-based model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!