Spider silk is one of the best natural fibers with excellent mechanical properties; however, due to the visual awareness, biting behavior and territory consciousness of spiders, we cannot obtain spider silk by large-scale breeding. Silkworms have a spinning system similar to that of spiders, and the use of transgenic technology in Bombyx mori, which is an ideal reactor for producing spider silk, is routine. In this study, the piggyBac transposon technique was used to achieve specific expression of two putative spider silk genes in the posterior silk glands of silkworms: aggregate spider glue 1 (ASG1) of Trichonephila clavipes (approximately 1.2 kb) and two repetitive units of pyriform spidroin 1 (PySp1) of Argiope argentata (approximately 1.4 kb). Then, two reconstituted spider silk-producing strains, the AG and PA strains, were obtained. Finally, the toughness of the silk fiber was increased by up to 91.5% and the maximum stress was enhanced by 36.9% in PA, and the respective properties in AG were increased by 21.0% and 34.2%. In summary, these two spider genes significantly enhanced the mechanical properties of silk fiber, which can provide a basis for spidroin silk production.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8546084PMC
http://dx.doi.org/10.1038/s41598-021-00029-8DOI Listing

Publication Analysis

Top Keywords

spider silk
16
silk
9
mechanical properties
8
silk fiber
8
spider
7
high mechanical
4
mechanical property
4
property silk
4
silk produced
4
produced transgenic
4

Similar Publications

Biomimetic peptide conjugates as emerging strategies for controlled release from protein-based materials.

Drug Deliv

December 2025

Biomedical Materials and Devices for Revolutionary Integrative Systems Engineering (BMD-RISE) Research Unit, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.

Biopolymers, such as collagens, elastin, silk fibroin, spider silk, fibrin, keratin, and resilin have gained significant interest for their potential biomedical applications due to their biocompatibility, biodegradability, and mechanical properties. This review focuses on the design and integration of biomimetic peptides into these biopolymer platforms to control the release of bioactive molecules, thereby enhancing their functionality for drug delivery, tissue engineering, and regenerative medicine. Elastin-like polypeptides (ELPs) and silk fibroin repeats, for example, demonstrate how engineered peptides can mimic natural protein domains to modulate material properties and drug release profiles.

View Article and Find Full Text PDF

Holocellulose nanofibrils biomimetic entrapment of liquid metal enable ultrastrong, tough, and lower-voltage-driven paper device.

Carbohydr Polym

March 2025

Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing 100083, China. Electronic address:

Integrating liquid metal (LM) with wood fibers for flexible paper electronics is intriguing yet extremely challenging due to poor mechanical performance. Here, we disclose a hemicellulose trapping strategy to achieve exceptional ultrastrong and tough LM-based paper electronics. Holocellulose nanofibrils (HCNFs) with hemicellulose retention of approximately 20 % are found to effectively entrap nanoscale LM within the fibril network, analogous to spider silk capturing small water droplets.

View Article and Find Full Text PDF

Artificial Biopolymers Derived from Transgenic Plants: Applications and Properties-A Review.

Int J Mol Sci

December 2024

Department of Plant Physiology, Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Biodegradable materials are currently one of the main focuses of research and technological development. The significance of these products grows annually, particularly in the fight against climate change and environmental pollution. Utilizing artificial biopolymers offers an opportunity to shift away from petroleum-based plastics with applications spanning various sectors of the economy, from the pharmaceutical and medical industries to food packaging.

View Article and Find Full Text PDF

Molecular Dynamics Study of the Structure and Mechanical Properties of Spider Silk Proteins.

Biomacromolecules

January 2025

Shanghai Engineering Research Center of Molecular Therapeutics & New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.

Spider silk is renowned for its exceptional toughness, with the strongest dragline silk composed of two proteins, MaSp1 and MaSp2, featuring central repetitive sequences and nonrepetitive terminal domains. Although these sequences to spider silk's strength and toughness, the specific roles of MaSp1 and MaSp2 at the atomic level remain unclear. Using AlphaFold3 models and molecular dynamics (MD) simulations, we constructed models of MaSp1 and MaSp2 and validated their stability.

View Article and Find Full Text PDF

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!