AI Article Synopsis

  • Type I cells in taste buds make up about half the cell population and have been largely understudied in terms of their function.
  • Research using GCaMP3 mice revealed that Type I cells respond to ATP but not to serotonin or direct taste stimuli, indicating their role in chemosensory activation.
  • The study suggests that Type I cells contribute to taste signaling by responding to ATP released by Type II cells, potentially acting similarly to glial cells in the central nervous system.

Article Abstract

In mammalian taste buds, Type I cells comprise half of all cells. These are termed "glial-like" based on morphologic and molecular features, but there are limited studies describing their function. We tested whether Type I cells sense chemosensory activation of adjacent chemosensory (i.e., Types II and III) taste bud cells, similar to synaptic glia. Using ;;GCaMP3 mice of both sexes, we confirmed by immunostaining that, within taste buds, GCaMP expression is predominantly in Type I cells (with no Type II and ≈28% Type III cells expressing weakly). In dissociated taste buds, GCaMP+ Type I cells responded to bath-applied ATP (10-100 μm) but not to 5-HT (transmitters released by Type II or III cells, respectively). Type I cells also did not respond to taste stimuli (5 μm cycloheximide, 1 mm denatonium). In lingual slice preparations also, Type I cells responded to bath-applied ATP (10-100 μm). However, when taste buds in the slice were stimulated with bitter tastants (cycloheximide, denatonium, quinine), Type I cells responded robustly. Taste-evoked responses of Type I cells in the slice preparation were significantly reduced by desensitizing purinoceptors or by purinoceptor antagonists (suramin, PPADS), and were essentially eliminated by blocking synaptic ATP release (carbenoxolone) or degrading extracellular ATP (apyrase). Thus, taste-evoked release of afferent ATP from type II chemosensory cells, in addition to exciting gustatory afferent fibers, also activates glial-like Type I taste cells. We speculate that Type I cells sense chemosensory activation and that they participate in synaptic signaling, similarly to glial cells at CNS tripartite synapses. Most studies of taste buds view the chemosensitive excitable cells that express taste receptors as the sole mediators of taste detection and transmission to the CNS. Type I "glial-like" cells, with their ensheathing morphology, are mostly viewed as responsible for clearing neurotransmitters and as the "glue" holding the taste bud together. In the present study, we demonstrate that, when intact taste buds respond to their natural stimuli, Type I cells sense the activation of the chemosensory cells by detecting the afferent transmitter. Because Type I cells synthesize GABA, a known gliotransmitter, and cognate receptors are present on both presynaptic and postsynaptic elements, Type I cells may participate in GABAergic synaptic transmission in the manner of astrocytes at tripartite synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8638694PMC
http://dx.doi.org/10.1523/JNEUROSCI.1444-21.2021DOI Listing

Publication Analysis

Top Keywords

type cells
48
taste buds
28
cells
23
type
19
taste
14
cells sense
12
cells responded
12
taste cells
8
sense chemosensory
8
chemosensory activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!