As the risk of graft loss due to acute rejection has declined, the goal of post-transplant management has switched to long-term preservation of organ function. Minimizing calcineurin inhibitor (CNI)-related nephrotoxicity is a key component of this objective. Everolimus is a mammalian target of rapamycin inhibitor/proliferation-signal inhibitor with potent immunosuppressive and anti-proliferative effects. It has been widely investigated in large randomized clinical studies that have shown it to have similar anti-rejection efficacy compared with standard-of-care regimens across organ transplant indications. With demonstrated potential to facilitate the reduction of CNI therapy and preserve renal function, everolimus is an alternative to the current standard-of-care CNI-based regimens used in de novo and maintenance solid organ transplantation recipients. Here, we provide an overview of the evidence from the everolimus clinical study program across kidney, liver, heart, and lung transplants, as well as other key data associated with its use in CNI reduction strategies in adult transplant recipients.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.trre.2021.100655DOI Listing

Publication Analysis

Top Keywords

solid organ
8
organ transplant
8
transplant recipients
8
overview efficacy
4
efficacy safety
4
everolimus
4
safety everolimus
4
everolimus adult
4
adult solid
4
organ
4

Similar Publications

Competitive fitness is a fundamental concept in evolutionary biology that captures the ability of organisms to survive, reproduce, and compete for resources in their environment. Competitive fitness is typically assessed in the lab by growing two or more competitors together and measuring the frequency of each at multiple time points. Traditional microbial competitive fitness assays are labor intensive and involve plating on solid medium and counting colonies.

View Article and Find Full Text PDF

Unlabelled: 20-carbon fatty acid-derived eicosanoids are versatile signaling oxylipins in mammals. In particular, a group of eicosanoids termed prostanoids are involved in multiple physiological processes, such as reproduction and immune responses. Although some eicosanoids such as prostaglandin E2 (PGE2) have been detected in some insect species, molecular mechanisms of eicosanoid synthesis and signal transduction in insects have been poorly investigated.

View Article and Find Full Text PDF

Background: Bacteria in physiological environments can generate mineralizing biofilms, which are associated with diseases like periodontitis or kidney stones. Modelling complex environments presents a challenge for the study of mineralization in biofilms. Here, we developed an experimental setup which could be applied to study the fundamental principles behind biofilm mineralization on rigid substrates, using a model organism and in a tailored bioreactor that mimics a humid environment.

View Article and Find Full Text PDF

Melanoma-derived extracellular vesicles transfer proangiogenic factors.

Oncol Res

January 2025

Department of Glycoconjugate Biochemistry, Faculty of Biology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, 30-387, Poland.

Angiogenesis, the expansion of pre-existing vascular networks, is crucial for normal organ growth and tissue repair, but is also involved in various pathologies, including inflammation, ischemia, diabetes, and cancer. In solid tumors, angiogenesis supports growth, nutrient delivery, waste removal, and metastasis. Tumors can induce angiogenesis through proangiogenic factors including VEGF, FGF-2, PDGF, angiopoietins, HGF, TNF, IL-6, SCF, tryptase, and chymase.

View Article and Find Full Text PDF

Patterns are encountered and employed in nature, such as in the communication or growth of organisms and sophisticated behaviors such as camouflage. Artificial patterns are not rare, either. They can also be used in sensing, recording information, and manipulating material properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!