Introduction: The extracellular matrix (ECM) is vital for cell and tissue development. Given its importance, extensive work has been conducted to develop biomaterials and drug delivery vehicles that capture features of ECM structure and function.

Areas Covered: This review highlights recent developments of ECM-inspired nanocarriers and their exploration for drug and gene delivery applications. Nanocarriers that are inspired by or created from primary components of the ECM (e.g. elastin, collagen, hyaluronic acid (HA), or combinations of these) are explicitly covered. An update on current clinical trials employing elastin-like proteins is also included.

Expert Opinion: Novel ECM-inspired nanoscale structures and conjugates continue to be of great interest in the materials science and bioengineering communities. Hyaluronic acid nanocarrier systems in particular are widely employed due to the functional activity of HA in mediating a large number of disease states. In contrast, collagen-like peptide nanocarriers are an emerging drug delivery platform with potential relevance to a myriad of ECM-related diseases, making their continued study most pertinent. Elastin-like peptide nanocarriers have a well-established tolerability and efficacy track record in preclinical analyses that has motivated their recent advancement into the clinical arena.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8601199PMC
http://dx.doi.org/10.1080/17425247.2021.1988925DOI Listing

Publication Analysis

Top Keywords

drug delivery
8
hyaluronic acid
8
peptide nanocarriers
8
therapeutic nanocarriers
4
nanocarriers comprising
4
comprising extracellular
4
extracellular matrix-inspired
4
matrix-inspired peptides
4
peptides polysaccharides
4
polysaccharides introduction
4

Similar Publications

Valsartan (VST) is an angiotensin II receptor antagonist with low oral bioavailability. The present study developed a solid self-nanoemulsifying drug delivery system (S-SNEDDS) to enhance the oral absorption and bioavailability of VST. VST-loaded liquid SNEDDS (VST@L-SNEDDS) was prepared by investigating the solubility of VST and constructing the pseudo-ternary phase diagrams.

View Article and Find Full Text PDF

Mechanistic Insights into Amorphous Solid Dispersions: Bridging Theory and Practice in Drug Delivery.

Pharm Res

January 2025

Solid State Pharmaceutics Research Laboratory, Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, 835215, Jharkhand, India.

Improving the bioavailability  of poorly water-soluble drugs presents a significant challenge in pharmaceutical development. Amorphous solid dispersions (ASDs) have garnered substantial attention for their capability to augment the solubility and dissolution rate of poorly water-soluble drugs, thereby markedly enhancing their bioavailability. ASDs, characterized by a metastable equilibrium where the active pharmaceutical ingredient (API) is molecularly dispersed, offer enhanced absorption compared to crystalline forms.

View Article and Find Full Text PDF

The repercussions of hormone replacement therapy (HRT) and bisphosphonates pose serious clinical challenges and warrant novel therapies for osteoporosis in menopausal women. To confront this issue, the present research aimed to design and fabricate daidzein (DZ); a phytoestrogen-loaded hydroxyapatite nanoparticles to mimic and compensate for synthetic estrogens and biomineralization. Hypothesizing this bimodal approach, hydroxyapatite nanoparticles (HAPNPs) were synthesized using the chemical-precipitation method followed by drug loading (DZHAPNPs) via sorption.

View Article and Find Full Text PDF

The opioid crisis, driven by synthetic opioids like fentanyl, demands innovative solutions. The opioid antidote naloxone has a short action ( ~ 1 hour), requiring repeated doses. To address this, we present a new and simple naloxone prodrug delivery system repurposing a hydrophilic derivative of acoramidis, a potent transthyretin ligand.

View Article and Find Full Text PDF

Cellulosic nanomaterials have significantly promoted the development of sensing devices, drug delivery, and bioreactor processes. Their synthetic flexibility makes them a prominent choice for immobilizing biomolecules or cells. In this work, we developed a practical and user-friendly approach to accessing cellulose nanoparticles (CNPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!