The H1N1 pandemic of 2009-2010, MERS epidemic of 2012, Ebola epidemics of 2013-2016 and 2018-2020, Zika epidemic of 2015-2016, and COVID-19 pandemic of 2019-2021, are recent examples in the long history of epidemics that demonstrate the enormous global impact of viral infection. The rapid development of safe and effective vaccines and therapeutics has proven vital to reducing morbidity and mortality from newly emerging viruses. Structural biology methods can be used to determine how antibodies elicited during infection or vaccination target viral proteins and identify viral epitopes that correlate with potent neutralization. Here we review how structural and molecular biology approaches have contributed to our understanding of antibody recognition of pathogenic viruses, specifically HIV-1, SARS-CoV-2, and Zika. Determining structural correlates of neutralization of viruses has guided the design of vaccines, monoclonal antibodies, and small molecule inhibitors in response to the global threat of viral epidemics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537525 | PMC |
http://dx.doi.org/10.3390/v13102106 | DOI Listing |
J Infect Dev Ctries
December 2024
Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
Introduction: Since the dawn of the new millennium, Candida species have been increasingly implicated as a cause of both healthcare-associated as well as opportunistic yeast infections, due to the widespread use of indwelling medical devices, total parenteral nutrition, systemic corticosteroids, cytotoxic chemotherapy, and broad-spectrum antibiotics. Candida tropicalis is a pathogenic Candida species associated with considerable morbidity, mortality, and drug resistance issues on a global scale.
Methodology: We report a case of a 43-year-old man who was admitted to our hospital for further management of severe coronavirus disease 2019 (COVID-19) pneumonia.
Introduction: China implemented a dynamic zero-COVID strategy to curb viral transmission in response to the coronavirus disease 2019 (COVID-19) pandemic. This strategy was designed to inhibit mutation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19. This study explores the dynamics of viral evolution under stringent non-pharmaceutical interventions (NPIs) through real-world observations.
View Article and Find Full Text PDFVirol J
January 2025
Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130122, People's Republic of China.
Monkeypox virus (MPXV) is an important zoonotic pathogenic virus, which poses serious threats to public health. MPXV infection can be prevented by immunization against the variola virus. Because of the safety risks and side effects of vaccination with live vaccinia virus (VACV) strain Tian Tan (VTT), we constructed two gene-deleted VTT recombinants (TTVAC7 and TTVC5).
View Article and Find Full Text PDFCommun Biol
January 2025
Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands.
Aedes mosquitoes transmit pathogenic arthropod-borne (arbo) viruses, putting nearly half the world's population at risk. Blocking virus replication in mosquitoes is a promising approach to prevent arbovirus transmission, the development of which requires in-depth knowledge of virus-host interactions and mosquito immunity. By integrating multi-omics data, we find that heat shock factor 1 (Hsf1) regulates eight small heat shock protein (sHsp) genes within one topologically associated domain in the genome of the Aedes aegypti mosquito.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Medical Biology, Albert Szent-Györgyi Medical School, University of Szeged, Somogyi u. 4, Szeged, 6720, Hungary.
In our research, we performed temporal transcriptomic profiling of host cells infected with Equid alphaherpesvirus 1 (EHV-1) by utilizing direct cDNA sequencing based on nanopore MinION technology. The sequencing reads were harnessed for transcript quantification at various time points. Viral infection-induced differential gene expression was identified through the edgeR package.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!