Prostate specific membrane antigen (PSMA) is a specific high frequency cell surface marker of prostate cancers. Theranostic approaches targeting PSMA show no major adverse effects and rule out off-tumor toxicity. A PSMA-retargeted oHSV (R-405) was generated which both infected and was cytotoxic exclusively for PSMA-positive cells, including human prostate cancer LNCaP and 22Rv1 cells, and spared PSMA-negative cells. R-405 in vivo efficacy against LLC1-PSMA and Renca-PSMA tumors consisted of inhibiting primary tumor growth, establishing long-term T immune response, immune heating of the microenvironment, de-repression of the anti-tumor immune phenotype, and sensitization to checkpoint blockade. The in situ vaccination protected from distant challenge tumors, both PSMA-positive and PSMA-negative, implying that it was addressed also to LLC1 tumor antigens. PSMA-retargeted oHSVs are a precision medicine tool worth being additionally investigated in the immunotherapeutic and in situ vaccination landscape against prostate cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8541339PMC
http://dx.doi.org/10.3390/v13102085DOI Listing

Publication Analysis

Top Keywords

situ vaccination
12
precision medicine
8
prostate cancer
8
psma-retargeted ohsv
8
prostate cancers
8
prostate
5
medicine approach
4
approach situ
4
vaccination prostate
4
cancer psma-retargeted
4

Similar Publications

Convolutional neural network-assisted Raman spectroscopy for high-precision diagnosis of glioblastoma.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

Department of Neurosurgery and Department of Neuroscience, The First Affiliated Hospital of Xiamen University, School of Medicine, College of Chemistry and Chemical Engineering, College of Energy, Institute of Artificial Intelligence, State Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361102, China; Scientific Research Foundation of State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Xiamen 361005, China. Electronic address:

Glioblastoma multiforme (GBM) is the most lethal intracranial tumor with a median survival of approximately 15 months. Due to its highly invasive properties, it is particularly difficult to accurately identify the tumor margins intraoperatively. The current gold standard for diagnosing GBM during surgery is pathology, but it is time-consuming.

View Article and Find Full Text PDF

Background: Laser interstitial thermal therapy (LITT) is a minimally invasive surgical treatment being employed frequently for radiographically progressive brain metastases. Considerable interest exists in combining LITT-mediated in situ vaccination to license immune checkpoint blockade (ICB). No studies have examined the clinical feasibility of this combination in brain metastases.

View Article and Find Full Text PDF

Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery.

Acta Biomater

December 2024

UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. Electronic address:

Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions.

View Article and Find Full Text PDF

Changes in AXL and/or MITF melanoma subpopulations in patients receiving immunotherapy.

Immunooncol Technol

December 2024

Department of Dermatology and Netherlands Institute for Pigment Disorders, Amsterdam University Medical Centers, Location AMC, University of Amsterdam, Cancer Center Amsterdam, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands.

Background: Tumor heterogeneity is a hurdle to effective therapy, as illustrated by the 'mixed responses' frequently seen in immunotherapy-treated patients. Previously, AXL+ tumor cells were identified to be highly resistant to targeted therapy, whereas more differentiated MITF+ tumor cells do respond to RAF and MEK inhibitors.

Patients And Methods: In this study, we analyzed tumor heterogeneity and explored the presence of the previously described AXL+ or MITF+ melanoma subpopulations in metastatic tissues by NanoString gene expression analysis, single-cell RNA sequencing and multiplex immunofluorescence.

View Article and Find Full Text PDF
Article Synopsis
  • * This study reveals that oxaliplatin enhances the effectiveness of oncolytic virotherapy by improving virus retention in targeted tumors and altering immune responses in distant tumors.
  • * The findings suggest a potential shift in treatment strategies for patients with widespread cancer, as the combination of oxaliplatin and virotherapy may enhance overall patient survival.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!