Acute gastroenteritis (AGE) is a major cause of morbidity and mortality worldwide, resulting in an estimated 440,571 deaths of children under age 5 annually. Rotavirus, norovirus, and sapovirus are leading causes of childhood AGE. A successful rotavirus vaccine has reduced rotavirus hospitalizations by more than 50%. Using rotavirus as a guide, elucidating the determinants, breath, and duration of serological antibody immunity to AGE viruses, as well as host genetic factors that define susceptibility is essential for informing development of future vaccines and improving current vaccine candidates. Here, we summarize the current knowledge of disease burden and serological antibody immunity following natural infection to inform further vaccine development for these three high-burden viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538683PMC
http://dx.doi.org/10.3390/v13102033DOI Listing

Publication Analysis

Top Keywords

immunity natural
8
natural infection
8
serological antibody
8
antibody immunity
8
serological humoral
4
humoral immunity
4
infection children
4
children high
4
high burden
4
burden gastrointestinal
4

Similar Publications

Cardamonin anticancer effects through the modulation of the tumor immune microenvironment in triple-negative breast cancer cells.

Am J Cancer Res

December 2024

Division of Pharmaceutical Sciences, College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University Tallahassee, FL 32307, The United States.

The tumor immune microenvironment (TIME) plays a critical role in cancer development and response to immunotherapy. Immune checkpoint inhibitors aim to reverse the immunosuppressive effects of the TIME, but their success has been limited. Immunotherapy directed at PD-1/PD-L1 has been widely employed, yielding positive results.

View Article and Find Full Text PDF

Coumarins, a group of naturally occurring compounds, have been reported to demonstrate anticancer potential. These substances, distinguished by their combined benzene and α-pyrone rings, have been demonstrated to impact multiple cellular mechanisms essential for the initiation and advancement of cancer. These agents work in different ways that prevent different tumor cells from growing, spreading, and increasing.

View Article and Find Full Text PDF

Modification and deterioration of old-growth forests by industrial forestry have seriously threatened species diversity worldwide. The loss of natural habitats increases the concentration of circulating glucocorticoids and incurs chronic stress in animals, influencing the immune system, growth, survival, and lifespan of animals inhabiting such areas. In this study, we tested whether great tit () nestlings grown in old-growth unmanaged coniferous forests have longer telomeres than great tit nestlings developing in young managed coniferous forests.

View Article and Find Full Text PDF

Gut microbiota are fundamental for healthy animal function, but the evidence that host function can be predicted from microbiota taxonomy remains equivocal, and natural populations remain understudied compared to laboratory animals. Paired analyses of covariation in microbiota and host parameters are powerful approaches to characterise host-microbiome relationships mechanistically, especially in wild populations of animals that are also lab models, enabling insight into the ecological basis of host function at molecular and cellular levels. The fruitfly is a preeminent model organism, amenable to field investigation by 'omic analyses.

View Article and Find Full Text PDF

Ovarian cancer is one of the deadliest gynecologic cancers affecting the female reproductive tract. This is largely attributed to frequent recurrence and development of resistance to the platinum-based drugs cisplatin and carboplatin. One of the major contributing factors to increased cancer progression and resistance to chemotherapy is the tumor microenvironment (TME).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!