To further classify the oomycete viruses that have been discovered in recent years, we investigated virus infection in the plant-parasitic oomycete in Japan. Double-stranded RNA detection, high-throughput sequencing, and RT-PCR revealed that the isolate UOP226 contained two viruses related to fusarivirus and totivirus, named Pythium ultimum RNA virus 1 (PuRV1) and Pythium ultimum RNA virus 2 (PuRV2), respectively. Phylogenetic analysis of the deduced amino acid sequence of the RNA-dependent RNA polymerase (RdRp) showed that fusari-like PuRV1 belonged to a different phylogenetic group than Plasmopara viticola lesion-associated fusari virus (PvlaFV) 1-3 from oomycete . Codon usage bias of the PuRV1 RdRp gene was more similar to those of fungi than and , suggesting that the PuRV1 ancestor horizontally transmitted to ancestor from fungi. Phylogenetic analysis of the deduced amino acid sequence of the RdRp of toti-like PuRV2 showed a monophyletic group with the other toti-like oomycete viruses from , and . However, the nucleotide sequences of toti-like oomycete viruses were not so homologous, suggesting the possibility of convergent evolution of toti-like oomycete viruses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538416PMC
http://dx.doi.org/10.3390/v13101931DOI Listing

Publication Analysis

Top Keywords

oomycete viruses
16
toti-like oomycete
12
pythium ultimum
8
ultimum rna
8
rna virus
8
phylogenetic analysis
8
analysis deduced
8
deduced amino
8
amino acid
8
acid sequence
8

Similar Publications

Increasing atmospheric CO levels have a variety of effects that can influence plant responses to microbial pathogens. However, these responses are varied, and it is challenging to predict how elevated CO (eCO) will affect a particular plant-pathogen interaction. We investigated how eCO may influence disease development and responses to diverse pathogens in the major oilseed crop, soybean.

View Article and Find Full Text PDF

Development of lateral flow immunochromatographic assay with Anti-Pythium insidiosum antibodies for point-of-care testing of vascular pythiosis.

Sci Rep

January 2025

Center of Excellence for Antimicrobial Resistance and Stewardship, Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.

The pathogenic oomycete Pythium insidiosum causes a fatal infectious illness known as pythiosis, impacting humans and certain animals in numerous countries in the tropics and subtropics. Delayed diagnosis is a primary factor contributing to the heightened morbidity and mortality associated with the disease. Several new serodiagnostic methods have been developed to improve the identification of pythiosis.

View Article and Find Full Text PDF

RNA silencing is a core cellular process that acts to defend the genome against potentially damaging genetic elements such as viruses and transposons. It has been extensively characterized in many eukaryotes and exploited as a tool for determining gene function through removing the activity of specific genes. It has also been used in Phytophthora species to reveal genes involved in different lifecycle stages.

View Article and Find Full Text PDF

Unlike animals, plants are unable to move and lack specialized immune cells and circulating antibodies. As a result, they are always threatened by a large number of microbial pathogens and harmful pests that can significantly reduce crop yield worldwide. Therefore, the development of new strategies to control them is essential to mitigate the increasing risk of crops lost to plant diseases.

View Article and Find Full Text PDF

Boosting plant immunity is an effective alternative to pesticides. However, environmental variations, accentuated by climate change, can compromise immunity. The robustness of a trait corresponds to the absence (or low level) of variation in that trait in the face of an environmental change.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!