The assessment of heat transfer is a complex task, especially for operations in the oil and gas industry, due to the harsh and flammable workspace. In light of the limitations of conventional sensors in harsh environments, this paper presents a fiber Bragg grating (FBG)-based sensor for the assessment of the heat transfer rate (HTR) in different liquids. To better understand the phenomenon of heat distribution, a preliminary analysis is performed by constructing two similar scenarios: those with and without the thermal insulation of a styrofoam box. The results indicate the need for a minimum of thermal power to balance the generated heat with the thermal losses of the setup. In this minimum heat, the behavior of the thermal distribution changes from quadratic to linear. To assess such features, the estimation of the specific heat capacity and the thermal conductivity of water are performed from 3 W to 12 W, in 3 W steps, resulting in a specific heat of 1.144 cal/g °C and thermal conductivity of 0.5682 W/m °C. The calibration and validation of the HTR sensor is performed in a thermostatic bath. The method, based on the temperature slope relative to the time curve, allowed for the measurement of HTR in water and Kryo 51 oil, for different heat insertion configurations. For water, the HTR estimation was 308.782 W, which means an uncertainty of 2.8% with the reference value of the cooling power (300 W). In Kryo 51 oil, the estimated heat absorbed by the oil was 4.38 kW in heating and 718.14 kW in cooling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8538806PMC
http://dx.doi.org/10.3390/s21206922DOI Listing

Publication Analysis

Top Keywords

assessment heat
12
heat transfer
12
heat
10
fbg-based sensor
8
sensor assessment
8
transfer rate
8
specific heat
8
thermal conductivity
8
kryo oil
8
thermal
6

Similar Publications

Preliminary study on the potential damage of cigarette smoke extract in 3D human chondrocyte culture.

In Vitro Cell Dev Biol Anim

December 2024

Laboratorio de Líquido Sinovial, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra (INRLGII), Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, 14389, Mexico City, Mexico.

Osteoarthritis (OA) is a chronic degenerative disease characterized by the progressive loss of articular cartilage. The role of cigarette smoke (CS) in OA is debated, with some studies suggesting a protective effect while others indicate it may pose a risk. Our preliminary findings suggest a link between smoking in young adults and severe knee OA, though the extent of this contribution is unclear.

View Article and Find Full Text PDF

This study investigates the use of multi-layered porous media (MLPM) to enhance thermal energy transfer within a counterflow double-pipe heat exchanger (DPHE). We conducted computational fluid dynamics (CFD) simulations on DPHEs featuring five distinct MLPM configurations, analyzed under both fully filled and partially filled conditions, alongside a conventional DPHE. The impact of various parameters such as porous layer arrangements, thickness, and flow Reynolds numbers on pressure drop, logarithmic mean temperature difference (LMTD), and performance evaluation criterion (PEC) was assessed.

View Article and Find Full Text PDF

Cardiac sex-difference functional studies have centred on measurements of twitch force and Ca dynamics. The energy expenditures from these two cellular processes: activation (Ca handling) and contraction (cross-bridge cycling), have not been assessed, and compared, between sexes. Whole-heart studies measuring oxygen consumption do not directly measure the energy expenditure of these activation-contraction processes.

View Article and Find Full Text PDF

This study delves into the multi-scale temporal and spatial variations of soil heat flux (G) within riparian zones and its correlation with net radiation (Rn) across six riparian woodlands in Shanghai, each characterized by distinct vegetation types. The objective is to assess the complex interrelations between G and Rn, and how these relationships are influenced by varying vegetation and seasons. Over the course of a year, data on G and Rn is collected to investigate their dynamics.

View Article and Find Full Text PDF

During their lifespan, plants are often exposed to a broad range of stresses that change their redox balance and lead to accumulation of reactive oxygen species (ROS). The traditional view is that this comes with negative consequences to cells structural integrity and metabolism and, to prevent this, plants evolved a complex and well-coordinated antioxidant defence system that relies on the operation of a range of enzymatic and non-enzymatic antioxidants (AO). Due to the simplicity of measuring their activity, and in the light of the persistent dogma that stress-induced ROS accumulation is detrimental for plants, it is not surprising that enzymatic AO have often been advocated as suitable proxies for stress tolerance, as well as potential targets for improving tolerance traits.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!