In this paper, a very high sensitivity microwave-based planar microfluidic sensor is presented. Sensitivity enhancement is achieved and described theoretically and experimentally by eliminating any extra parasitic capacitance not contributing to the sensing mechanism. The sensor consists of a microstrip transmission line loaded with a series connected shunt LC resonator. A microfluidic channel is attached to the area of the highest electric field concentration. The electric field distribution and, therefore, the resonance characteristics are modified by applying microfluidic dielectric samples to the sensing area. The sensor performance and working principle are described through a circuit model analysis. A device prototype is fabricated, and experimental measurements using water/ethanol and water/methanol solutions are presented for validation of the sensing mathematical model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8537315PMC
http://dx.doi.org/10.3390/s21206811DOI Listing

Publication Analysis

Top Keywords

microfluidic dielectric
8
transmission loaded
8
electric field
8
extremely sensitive
4
sensitive microwave
4
microfluidic
4
microwave microfluidic
4
sensor
4
dielectric sensor
4
sensor transmission
4

Similar Publications

The application of physical fields is crucial for droplet generation and manipulation, underpinning technologies like printing, microfluidic biochips, drug delivery, and flexible sensors. Despite advancements, precise micro/nanoscale droplet generation and accurate microfluidic reactions remain challenging. Inspired by the liquid ejection mechanisms in microscopic organisms, an electrostatic manipulator for the precise capture, emission, and transport of microdroplets is proposed.

View Article and Find Full Text PDF

Background: The early detection of Hepatocellular Carcinoma (HCC) is crucial for improving patient survival rates.Early diagnosis of HCC can significantly enhance treatment outcomes and reduce disease progression. Antigen detection of tumor markers is one of the important diagnostic methods for HCC.

View Article and Find Full Text PDF

Research on metasurface sensors with high sensitivity, strong specificity, good biocompatibility and strong integration is the key to promote the application of terahertz waves in the field of biomedical detection. However, traditional metallic terahertz metasurfaces have shortcomings such as poor biocompatibility and large ohmic loss in the terahertz frequency band, impeding their further application and integration in the field of biosensing detection. Here, we overcome this challenge by proposing a high-performance terahertz metasurface based on gold nanoparticles and single-walled carbon nanotubes composite film.

View Article and Find Full Text PDF

Modeling Electrowetting on Dielectric for Novel Droplet-Based Microactuation.

Micromachines (Basel)

December 2024

Department of Mechanical Engineering, Brigham Young University, 350 Engineering Building, Provo, UT 84602, USA.

Recent advancements in Electrowetting on Dielectric (EWOD) systems, such as simplified fabrication, low-voltage actuation, and the development of more reliable materials, are expanding the potential applications of electrowetting actuators. One application of EWOD actuators is in RF devices to enable dynamic reconfiguration and allow real-time adjustments to frequency and bandwidth. In this paper, a method is introduced to actuate a panel using EWOD forces.

View Article and Find Full Text PDF

Although various sensors specifically developed for target analytes are available, affordable biosensing solutions with broad applicability are limited. In this study, a cost-effective biosensor for detecting human epidermal growth factor receptor 2 (HER2) was developed using custom-made gold leaf electrodes (GLEs). A novel strategy for antibody immobilization on a gold surface, for the first time mediated by protein L and HER2-specific antibody trastuzumab, was examined using commercial screen-printed gold electrodes and GLEs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!