A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography. | LitMetric

In-Line Detection with Microfluidic Bulk Acoustic Wave Resonator Gas Sensor for Gas Chromatography.

Sensors (Basel)

State Key Laboratory of Precision Measuring Technology and Instruments, College of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.

Published: October 2021

A microfluidic film bulk acoustic wave resonator gas sensor (mFBAR) adapted specifically as an in-line detector in gas chromatography was described. This miniaturized vapor sensor was a non-destructive detector with very low dead volume (0.02 μL). It was prepared by enclosing the resonator in a microfluidic channel on a chip with dimensions of only 15 mm × 15 mm × 1 mm. The device with polymer coating showed satisfactory performance in the detection of organophosphorus compound, demonstrating a very low detection limit (a dozen parts per billion) with relatively short response time (about fifteen seconds) toward the simulant of chemical warfare agent, dimethyl methylphosphonate. The in-line detection of the mFBAR sensor with FID was constructed and employed to directly measure the concentration profile on the solid surface by the mFBAR with the controlled concentration profile in the mobile phase at the same time. The difference of peak-maximum position between mobile phase and solid phase could be a convenient indicator to measure mass transfer rate. With the response of the mFBAR and FID obtained in one injection, an injection mass-independent parameter can be calculated and used to identify the analyte of interest.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540273PMC
http://dx.doi.org/10.3390/s21206800DOI Listing

Publication Analysis

Top Keywords

in-line detection
8
bulk acoustic
8
acoustic wave
8
wave resonator
8
resonator gas
8
gas sensor
8
gas chromatography
8
concentration profile
8
mobile phase
8
detection microfluidic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!