A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface. | LitMetric

Theoretical and Numerical Analysis of Active Switching for Narrow-Band Thermal Emission with Graphene Ribbon Metasurface.

Sensors (Basel)

Department of Mechanical and Production Engineering, Niigata University, 8050, Ikarashi 2-no-cho, Niigata 950-2181, Japan.

Published: October 2021

Components smaller than the wavelength of electromagnetic waves are called meta-atoms. Thermal emission can be controlled by an artificial structure in which these meta-atoms are arranged on the surface. This artificial structure is called a metasurface, and its optical properties are determined by the materials and shapes of the meta-atoms. However, optical devices may require active control of thermal emission. In the present study, we theoretically and numerically analyze a wavelength-selective emitter using a graphene ribbon metasurface. The graphene ribbon metasurface consists of a graphene ribbon array, potassium bromide thin film, and silver substrate. The geometric parameters of the graphene metasurface are determined based on an equivalent circuit model that agrees well with the results of the electromagnetic field analysis (rigorous coupled-wave analysis). The proposed emitter causes impedance matching depending on the conductivity of the graphene ribbon in a very narrow wavelength range. The conductivity of graphene can be actively controlled by the gate voltage. Therefore, the proposed emitters may realize near-perfect emission with a high quality factor and active controllable switching for various wavelengths. In addition, the quality factor can be changed by adjusting the electron mobility of graphene. The proposed emitter can be used for optical devices such as thermophotovoltaic systems and biosensing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8540343PMC
http://dx.doi.org/10.3390/s21206738DOI Listing

Publication Analysis

Top Keywords

graphene ribbon
20
thermal emission
12
ribbon metasurface
12
graphene
8
artificial structure
8
optical devices
8
proposed emitter
8
conductivity graphene
8
quality factor
8
ribbon
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!