Purpose: This study aimed to systematically present application situation and therapeutic effect of proton therapy (PT), heavy ion therapy, and helical tomotherapy (TOMO) for gastric cancer (GC), and to find gaps of existing studies.

Methods: PubMed, EMBASE, the Cochrane Library, Web of Science, and Chinese Biological Medical Database were searched. Tables, bubble plot, and heat map were conducted to display results.

Results: Fourteen studies were included. About PT, 7 single-arm studies showed median overall survival (OS) within 2-66 months and 1 study reported 40% of patients happened moderate degree of radiation gastritis. About TOMO, 1 study reported longer median OS and progression-free survival, lower occurrence of Grade III toxicity, and late toxicity compared to 3D-CRT, while another study remained neutral. About heavy ion therapy, there was no clinical study was found.

Conclusions: Existing studies presented good clinic treatment effect about PT and TOMO for GC, and furthermore clinical studies are needed.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000518997DOI Listing

Publication Analysis

Top Keywords

heavy ion
12
ion therapy
12
proton therapy
8
therapy heavy
8
therapy helical
8
helical tomotherapy
8
gastric cancer
8
study reported
8
therapy
5
study
5

Similar Publications

Confinement-induced Ni-based MOF formed on TiCT MXene support for enhanced capacitive deionization of chromium(VI).

Sci Rep

January 2025

School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, People's Republic of China.

MXenes, as a novel two-dimensional lamellar material, has attracted much attention. However, MXenes lamellar are prone to collapse and stacking under hydrogen bonding and interlayer van der Waals forces, which affects their electrochemical and capacitive deionization performance. A three-dimensional Ni-1,3,5-benzenetricarboxylate/TiCT (Ni-BTC/TiCT) composite electrode material was developed to enhance the electrochemical and capacitive deionization performance.

View Article and Find Full Text PDF

The utilization of cyanobacteria toxin-producing blooms for metal ions adsorption has garnered significant attention over the last decade. This study investigates the efficacy of dead cells from Microcystis aeruginosa blooms, collected from agricultural drainage water reservoir, in removing of cadmium, lead, and zinc ions from aqueous solutions, and simultaneously addressing the mitigation of toxin-producing M. aeruginosa bloom.

View Article and Find Full Text PDF

In this study, we report the modification of a monolithic γ-aluminum oxy-hydroxide (γ-AlOOH) aerogel with cellulose nanofibers (CNFs) using the sol-gel method via supercritical drying. The optimized 2% CNF (w/w) results in a monolithic CNF-γ-AlOOH that is amorphous in nature, along with C-C and C-O-C functional groups. Transmission electron microscopy (TEM) images of the as-synthesized CNF-γ-AlOOH showed CNF embedded in the γ-AlOOH aerogel.

View Article and Find Full Text PDF

Precise Measurement of the e^{+}e^{-}→D_{s}^{+}D_{s}^{-} Cross Section at Center-of-Mass Energies from Threshold to 4.95 GeV.

Phys Rev Lett

December 2024

State Key Laboratory of Particle Detection and Electronics, Beijing 100049, Hefei 230026, People's Republic of China.

Using the e^{+}e^{-} collision data collected with the BESIII detector operating at the BEPCII collider, at center-of-mass energies from the threshold to 4.95 GeV, we present precise measurements of the cross section for the process e^{+}e^{-}→D_{s}^{+}D_{s}^{-} using a single-tag method. The resulting cross section line shape exhibits several new structures, thereby offering an input for a future coupled-channel analysis and model tests, which are critical to understand vector charmonium-like states with masses between 4 and 5 GeV.

View Article and Find Full Text PDF

The detection of lead ions (Pb) is crucial due to its harmful effects on health and the environment. In this article, what we believe to be a novel dielectric-metal hybrid structure localized surface plasmon resonance (LSPR) sensor for ultra-trace detection of Pb is proposed, featuring a zinc sulfide layer, silver nanodisks (Ag-disks), and graphene oxide (GO) covering the Ag-disks. The sensor works by detecting the variation of gold nanoparticles (AuNPs) on its surface when Pb cleaves a substrate strand linked to a DNAzyme, causing the AuNPs modified on the substrate strand to disperse.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!