Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Schottky-contacted nanosensors have attracted extensive attention due to their high sensitivity and fast response time. In this article, we proved that the construction of Schottky contact by Pt nanoparticles (NPs) decoration can effectively improve the performance of VO nanobelts photodetectors. After modified by Pt NPs, the photocurrent of VO nanobelts is increased by more than two orders of magnitude, and the photoresponse speed is improved by at least three orders of magnitude. Detailed studies have shown that the performance enhancement is attributed to the formation of the Schottky contact at the electrode-semiconductor interface due to the decrease of surface gas adsorption and the increase of VO work function after Pt NPs modification. The strong built-in field in the Schottky barrier region will quickly separate photogenerated carriers, thereby reducing the electron-hole recombination rate, resulting in the fast response time and an increase in the free carrier density. Moreover, it is found that this enhancement effect can be regulated by controlling the pressure to modulating the Schottky barrier height at the interface. Overall, the Pt NPs-modified VO nanobelts photodetector exhibits a broad response spectrum (visible to near infrared), fast rise/fall response time (less than 6.12/6.15 ms), high responsivity (5.6 A/W), and high specific detectivity (6.9 × 10 Jones). This study demonstrates the feasibility of building a Schottky barrier to enhance the photodetection performance, which provides a general and effective strategy towards the construction and its practical application of supersensitive and fast-response nanosensors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2021.08.216 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!