Injection of microparticulate and nanoparticulate zero valent iron has become a regularly used method for groundwater remediation. Because of subsurface inhomogeneities, however, it is complicated to predict the ZVI transport in the subsurface, meaning that tools capable of determining its distribution after injection are highly useful. Here, we have developed a new direct-push based technique, which combines fluorescent and visible imaging, for detection of sulfidized nanoparticulate zero valent iron (S-nZVI) in the subsurface. Laboratory experiments show that the redox sensitive fluorophore riboflavin is rapidly reduced by S-nZVI within 200 s. Because the reduced riboflavin losses its green fluorescence, it can be used as S-nZVI sensitive indicator. Secondly, S-nZVI is black and tints light coloured sediment to a degree that allows detection in images. For quartz sand, 70 mg/kg of S-nZVI can be detected by visible imaging. Based on these results, a new direct-push probe (Dye-OIP) was designed based on Geoprobe's Optical Image Profiler (OIP), which was equipped with a fluorophore injection port below the OIP-unit. The injectant consisted of the redox active riboflavin mixed with the redox inactive fluorophore rhodamine WT, which fluoresces red and was used to verify that the mixture was indeed injected and detectable. Small scale experiments show that the fluorescence of this mixture in S-nZVI amended sand changes within 150 s from green with a hue of ~50 to red with a hue of ~30 when imaged with Dye-OIP. Tests of the Dye-OIP after a S-nZVI injection in a 1 m sized tank show that the tool could detect S-nZVI via fluorescence and visible imaging, when S-nZVI concentration was >0.2 mg per g dry sediment. Thus, these novel methods should be able to detect S-nZVI in the subsurface, without relying on infrastructure such as wells. Based on our results, the Dye-OIP could be further improved to make it suitable for regular use in the field.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconhyd.2021.103896 | DOI Listing |
Environ Pollut
April 2023
Department of Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China. Electronic address:
The rsh based stringent response system is widely employed by bacteria to cope with environmental stresses. However, how does the stringent response involve in bacterial accommodation to environmental pollutant is largely unexplored. In this study, to comprehensively understand the roles of rsh in Novosphingobium pentaromativorans US6-1's metabolism and accommodation to different pollutants, three distinct pollutants, phenanthrene, copper and nanoparticulated zero valent iron (nZVI) were selected as exposure substances.
View Article and Find Full Text PDFJ Contam Hydrol
December 2021
Geological Survey of Denmark & Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark. Electronic address:
Injection of microparticulate and nanoparticulate zero valent iron has become a regularly used method for groundwater remediation. Because of subsurface inhomogeneities, however, it is complicated to predict the ZVI transport in the subsurface, meaning that tools capable of determining its distribution after injection are highly useful. Here, we have developed a new direct-push based technique, which combines fluorescent and visible imaging, for detection of sulfidized nanoparticulate zero valent iron (S-nZVI) in the subsurface.
View Article and Find Full Text PDFJ Hazard Mater
June 2021
Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China. Electronic address:
Knowledge of nanoparticulate zero-valent iron (nZVI) transformation in soils and its relationship with the potential impacts on soil properties are crucial to evaluate the environmental implication and application of nZVI. This study investigated nZVI transformation and the effects on soil properties in eight soils with various ageing time and soil moisture content (SMC). Spherical nZVI was gradually oxidized, collapsed, and adhered to clay minerals, and crystalline maghemite and magnetite were the primary oxidation products.
View Article and Find Full Text PDFSci Total Environ
October 2020
Department of Environmental Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China. Electronic address:
With increasing environmental application of nanoparticulate zero-valent iron (nZVI), it is essential to explore the interaction of nZVI with dissolved organic matter (DOM) and clay mineral particles (CMPs) and its potential effect on the formation of DOM-mineral complex that may impact the carbon sequestration. The aggregation and adsorption behaviors of nZVIs (two bare nZVIs of different sizes and one carboxymethyl cellulose coated nZVI (CMC-nZVI)) and CMPs (kaolinite and montmorillonite) coexisting in DOM (humic acid and fulvic acid) solutions were systematically investigated. The bare nZVIs more easily formed heteroaggregates with montmorillonite than kaolinite in DOM solutions, while the CMC-nZVI tended to attach on kaolinite surface.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2020
Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755, United States. Electronic address:
The advent of microfluidic technology brings new tools and insights to a wide range of applications across chemical and biomedical engineering. In this study, we first demonstrate the development of rod-like zero-valent iron (rZVI) multistack nanoassemblies and examine their superior catalytic capability with microfluidic on-chip platform. rZVI having an average dimension of 27 nm in diameter and 98 nm in length is easily synthesized during the reduction of ferric chloride by sodium borohydride with ethanol as the solvent.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!