Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The science-informed design of stable carbonaceous materials as 'green' soil amendment will be indispensable for improving the soil fertility and carbon sequestration ability. In this study, a series of biochars were prepared from mineral-rich cellulosic corn straw (C), lignocellulosic pine wood (P), and lignin-rich walnut shell (W) at 500 or 700 °C. Their change of carbon stability after 90-day interaction with two typical soil clay minerals (i.e., kaolinite or montmorillonite) under a field-relevant condition (mass ratio of biochar to soil clay at 1:5) was evaluated as carbon loss (%) determined by the KCrO-HSO oxidation method. The spectroscopic analyses demonstrated that the highly graphitized and microporous W-biochars exhibited a high carbon stability (35.6-40.2% C loss) that could be further enhanced in the presence of kaolinite or montmorillonite. This promotion was probably ascribed to the transformation from the aromatic CC/CC functionality to the ester CO and methyl CH configurations on the biochar surface forming stable organo-mineral complexes (i.e., COAl) with the clay minerals. In contrast, a substantial level of labile C fraction was observed in the C- and P-biochars (e.g., 94.8% C loss of P700-M) after incubation with the clay minerals, especially for montmorillonite with high CEC, swelling capacity, and week interlayer bonding. This adverse impact was possibly attributed to the aliphatic CC/CC bonding with low oxidation resistance after co-precipitation with the clay minerals. The results of this study can provide deeper insight into the evolution of physicochemical properties, porous structure, and carbon interactions during long-term biochar application for carbon sequestration and sustainable development.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2021.151124 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!