A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions between biochar and clay minerals in changing biochar carbon stability. | LitMetric

Interactions between biochar and clay minerals in changing biochar carbon stability.

Sci Total Environ

Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China. Electronic address:

Published: February 2022

AI Article Synopsis

  • The study focuses on creating stable biochars from different organic materials (corn straw, pine wood, walnut shell) to improve soil fertility and capture carbon.
  • It examines how these biochars interact with soil clay minerals (kaolinite and montmorillonite) and their carbon stability over 90 days, revealing that walnut shell biochars maintain better carbon stability compared to the others.
  • The findings highlight the transformation of biochar properties when mixed with clay, suggesting that certain biochars can form strong organo-mineral complexes, which enhance their effectiveness as sustainable soil amendments.

Article Abstract

The science-informed design of stable carbonaceous materials as 'green' soil amendment will be indispensable for improving the soil fertility and carbon sequestration ability. In this study, a series of biochars were prepared from mineral-rich cellulosic corn straw (C), lignocellulosic pine wood (P), and lignin-rich walnut shell (W) at 500 or 700 °C. Their change of carbon stability after 90-day interaction with two typical soil clay minerals (i.e., kaolinite or montmorillonite) under a field-relevant condition (mass ratio of biochar to soil clay at 1:5) was evaluated as carbon loss (%) determined by the KCrO-HSO oxidation method. The spectroscopic analyses demonstrated that the highly graphitized and microporous W-biochars exhibited a high carbon stability (35.6-40.2% C loss) that could be further enhanced in the presence of kaolinite or montmorillonite. This promotion was probably ascribed to the transformation from the aromatic CC/CC functionality to the ester CO and methyl CH configurations on the biochar surface forming stable organo-mineral complexes (i.e., COAl) with the clay minerals. In contrast, a substantial level of labile C fraction was observed in the C- and P-biochars (e.g., 94.8% C loss of P700-M) after incubation with the clay minerals, especially for montmorillonite with high CEC, swelling capacity, and week interlayer bonding. This adverse impact was possibly attributed to the aliphatic CC/CC bonding with low oxidation resistance after co-precipitation with the clay minerals. The results of this study can provide deeper insight into the evolution of physicochemical properties, porous structure, and carbon interactions during long-term biochar application for carbon sequestration and sustainable development.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.151124DOI Listing

Publication Analysis

Top Keywords

clay minerals
20
carbon stability
12
carbon sequestration
8
soil clay
8
kaolinite montmorillonite
8
carbon
7
clay
6
minerals
5
interactions biochar
4
biochar clay
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!