Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation. Compared with db/m mice, spatial learning/memory, dendritic spines, and synaptic plasticity were all impaired in the hippocampus of the db/db mice. In addition, the dendritic spine density of neurons was significantly decreased after treatment with advanced glycation end-products (AGEs). We used high-throughput RNA sequencing (RNA-Seq) to detect circRNA expression in DE, and the results revealed that 183 circRNAs were significantly altered in primary hippocampal neurons treated with AGEs. Three circRNAs were chosen for detection using quantitative real-time polymerase chain reaction (qRT-PCR), including circ-Smox (chr2: 131511984-131516443), circ-Nbea (mmu-chr3: 56079859-56091120), and circ-Setbp1 (chr18: 79086551-79087180), and circ-Nbea expression was significantly decreased. According to the bioinformatics prediction and detection using qRT-PCR and double luciferase assays, circ-Nbea sponges miR-128-3p. Based on these results, we speculated that a newly identified circRNA, circ-Nbea, may play an important role in the development of DE, and the mechanism is mediated by sponging miR-128-3p. This study provides new insight into the treatment of DE.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2021.147702 | DOI Listing |
Brain Res
January 2022
Department of Pharmacy, College of Medicine, Wuhan University of Science and Technology, Huangjiahu Road 2(#), Wuhan, Hubei, China. Electronic address:
Circular RNAs (circRNAs) play key roles in various pathogenic and biological processes in human disease. However, the effect of circRNAs on the development of diabetic encephalopathy (DE) remains largely unknown. Therefore, the aim of this study was to investigate changes in the expression of circRNAs and their potential mechanism in DE formation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!