Background: Stroke affects millions of people every year and is a leading cause of disability, resulting in significant financial cost and reduction in quality of life. Rehabilitation after stroke aims to reduce disability by facilitating recovery of impairment, activity, or participation. One aspect of stroke rehabilitation that may affect outcomes is the amount of time spent in rehabilitation, including minutes provided, frequency (i.e. days per week of rehabilitation), and duration (i.e. time period over which rehabilitation is provided). Effect of time spent in rehabilitation after stroke has been explored extensively in the literature, but findings are inconsistent. Previous systematic reviews with meta-analyses have included studies that differ not only in the amount provided, but also type of rehabilitation.

Objectives: To assess the effect of 1. more time spent in the same type of rehabilitation on activity measures in people with stroke; 2. difference in total rehabilitation time (in minutes) on recovery of activity in people with stroke; and 3. rehabilitation schedule on activity in terms of: a. average time (minutes) per week undergoing rehabilitation, b. frequency (number of sessions per week) of rehabilitation, and c. total duration of rehabilitation.

Search Methods: We searched the Cochrane Stroke Group trials register, CENTRAL, MEDLINE, Embase, eight other databases, and five trials registers to June 2021. We searched reference lists of identified studies, contacted key authors, and undertook reference searching using Web of Science Cited Reference Search.

Selection Criteria: We included randomised controlled trials (RCTs) of adults with stroke that compared different amounts of time spent, greater than zero, in rehabilitation (any non-pharmacological, non-surgical intervention aimed to improve activity after stroke). Studies varied only in the amount of time in rehabilitation between experimental and control conditions. Primary outcome was activities of daily living (ADLs); secondary outcomes were activity measures of upper and lower limbs, motor impairment measures of upper and lower limbs, and serious adverse events (SAE)/death.

Data Collection And Analysis: Two review authors independently screened studies, extracted data, assessed methodological quality using the Cochrane RoB 2 tool, and assessed certainty of the evidence using GRADE. For continuous outcomes using different scales, we calculated pooled standardised mean difference (SMDs) and 95% confidence intervals (CIs). We expressed dichotomous outcomes as risk ratios (RR) with 95% CIs.

Main Results: The quantitative synthesis of this review comprised 21 parallel RCTs, involving analysed data from 1412 participants.  Time in rehabilitation varied between studies. Minutes provided per week were 90 to 1288. Days per week of rehabilitation were three to seven. Duration of rehabilitation was two weeks to six months. Thirteen studies provided upper limb rehabilitation, five general rehabilitation, two mobilisation training, and one lower limb training. Sixteen studies examined participants in the first six months following stroke; the remaining five included participants more than six months poststroke. Comparison of stroke severity or level of impairment was limited due to variations in measurement. The risk of bias assessment suggests there were issues with the methodological quality of the included studies. There were 76 outcome-level risk of bias assessments: 15 low risk, 37 some concerns, and 24 high risk. When comparing groups that spent more time versus less time in rehabilitation immediately after intervention, we found no difference in rehabilitation for ADL outcomes (SMD 0.13, 95% CI -0.02 to 0.28; P = 0.09; I = 7%; 14 studies, 864 participants; very low-certainty evidence), activity measures of the upper limb (SMD 0.09, 95% CI -0.11 to 0.29; P = 0.36; I = 0%; 12 studies, 426 participants; very low-certainty evidence), and activity measures of the lower limb (SMD 0.25, 95% CI -0.03 to 0.53; P = 0.08; I = 48%; 5 studies, 425 participants; very low-certainty evidence). We found an effect in favour of more time in rehabilitation for motor impairment measures of the upper limb (SMD 0.32, 95% CI 0.06 to 0.58; P = 0.01; I = 10%; 9 studies, 287 participants; low-certainty evidence) and of the lower limb (SMD 0.71, 95% CI 0.15 to 1.28; P = 0.01; 1 study, 51 participants; very low-certainty evidence). There were no intervention-related SAEs. More time in rehabilitation did not affect the risk of SAEs/death (RR 1.20, 95% CI 0.51 to 2.85; P = 0.68; I = 0%; 2 studies, 379 participants; low-certainty evidence), but few studies measured these outcomes. Predefined subgroup analyses comparing studies with a larger difference of total time spent in rehabilitation between intervention groups to studies with a smaller difference found greater improvements for studies with a larger difference. This was statistically significant for ADL outcomes (P = 0.02) and activity measures of the upper limb (P = 0.04), but not for activity measures of the lower limb (P = 0.41) or motor impairment measures of the upper limb (P = 0.06).

Authors' Conclusions: An increase in time spent in the same type of rehabilitation after stroke results in little to no difference in meaningful activities such as activities of daily living and activities of the upper and lower limb but a small benefit in measures of motor impairment (low- to very low-certainty evidence for all findings). If the increase in time spent in rehabilitation exceeds a threshold, this may lead to improved outcomes. There is currently insufficient evidence to recommend a minimum beneficial daily amount in clinical practice. The findings of this study are limited by a lack of studies with a significant contrast in amount of additional rehabilitation provided between control and intervention groups. Large, well-designed, high-quality RCTs that measure time spent in all rehabilitation activities (not just interventional) and provide a large contrast (minimum of 1000 minutes) in amount of rehabilitation between groups would provide further evidence for effect of time spent in rehabilitation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8545241PMC
http://dx.doi.org/10.1002/14651858.CD012612.pub2DOI Listing

Publication Analysis

Top Keywords

time spent
36
rehabilitation
24
measures upper
24
spent rehabilitation
20
activity measures
20
time
18
time rehabilitation
16
motor impairment
16
upper limb
16
lower limb
16

Similar Publications

Duration in Immigration Detention and Health Harms.

JAMA Netw Open

January 2025

Goldman School of Public Policy, University of California, Berkeley.

Importance: Length of custody is a mechanism by which carceral systems can worsen health. However, there are fewer studies examining US immigration detention, in large part because US immigration detention is largely privately operated and opaque by design.

Objectives: To examine the association between duration spent in US immigration detention with subsequent health outcomes.

View Article and Find Full Text PDF

Association Between Symptoms of Body Dysmorphia and Social Media Usage: A Cross-Generational Comparison.

Facial Plast Surg Aesthet Med

January 2025

Division of Facial Plastic and Reconstructive Surgery, Department of Otolaryngology - Head and Neck Surgery, Stanford School of Medicine, Stanford, California, USA.

The rise of social media parallels a mental health epidemic. The effect of social media usage on rates and severity of body dysmorphic disorder is not well-understood. To determine if an association exists between social media engagement, body dysmorphia symptoms, and/or interest in cosmetic surgery in a demographically diverse cross-section of the U.

View Article and Find Full Text PDF

The impact of enrichment on stress reduction in zebrafish () exposed to a novel environment was assessed. Four control shoals (CTRL) and five treated shoals (TRT), each with eight fish, were observed; in TRT tanks, a PVC pipe was included (three-way tube, 11.7 × 4 cm) as enrichment for 90 days.

View Article and Find Full Text PDF

As part of simulation-based learning, it is well known that debriefing plays a crucial role; ineffective debriefing can lead to a reiteration of errors in decision-making and a poor understanding of one's limitations, compromising the learner's psychological safety and making future simulated learning experiences less effective. In Italy, although simulation has been used in nursing education for more than 20 years, there is a general lack of data regarding the elements of debriefing. An exploratory, cross-sectional, multicenter nationwide study was conducted to identify current debriefing practices in Italian simulation-based nursing education.

View Article and Find Full Text PDF

Objectives: Trans-sodium crocetinate (TSC) is one of the crocetin derivations that is more soluble and stable than crocetin and its cis form. It easily crosses the blood-brain barrier. TSC has neuroprotective effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!