From ultrasensitive detectors of fundamental forces to quantum networks and sensors, mechanical resonators are enabling next-generation technologies to operate in room-temperature environments. Currently, silicon nitride nanoresonators stand as a leading microchip platform in these advances by allowing for mechanical resonators whose motion is remarkably isolated from ambient thermal noise. However, to date, human intuition has remained the driving force behind design processes. Here, inspired by nature and guided by machine learning, a spiderweb nanomechanical resonator is developed that exhibits vibration modes, which are isolated from ambient thermal environments via a novel "torsional soft-clamping" mechanism discovered by the data-driven optimization algorithm. This bioinspired resonator is then fabricated, experimentally confirming a new paradigm in mechanics with quality factors above 1 billion in room-temperature environments. In contrast to other state-of-the-art resonators, this milestone is achieved with a compact design that does not require sub-micrometer lithographic features or complex phononic bandgaps, making it significantly easier and cheaper to manufacture at large scales. These results demonstrate the ability of machine learning to work in tandem with human intuition to augment creative possibilities and uncover new strategies in computing and nanotechnology.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.202106248 | DOI Listing |
Shock
January 2025
Department of Industrial and Systems Engineering, University of Florida, P.O. Box 116595, Gainesville, FL, 32611, USA.
Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to ICUs of Mayo Clinic Hospitals over eight-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status.
View Article and Find Full Text PDFShock
January 2025
Department of Biomedical Engineering, Rutgers University, Piscataway, NJ 599 Taylor Road, Room 209, Piscataway, NJ, USA 08854.
Introduction: Coagulopathy following traumatic injury impairs stable blood clot formation and exacerbates mortality from hemorrhage. Understanding how these alterations impact blood clot stability is critical to improving resuscitation. Furthermore, the incorporation of machine learning algorithms to assess clinical markers, coagulation assays and biochemical assays allows us to define the contributions of these factors to mortality.
View Article and Find Full Text PDFEnviron Health Perspect
January 2025
Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Weymouth, UK.
Background: Environmental change in coastal areas can drive marine bacteria and resulting infections, such as those caused by , with both foodborne and nonfoodborne exposure routes and high mortality. Although ecological drivers of in the environment have been well-characterized, fewer models have been able to apply this to human infection risk due to limited surveillance.
Objectives: The Cholera and Other Illness Surveillance (COVIS) system database has reported infections in the United States since 1988, offering a unique opportunity to both explore the forecasting capabilities machine learning could provide and to characterize complex environmental drivers of infections.
ACS Nano
January 2025
James Franck Institute, University of Chicago, Chicago, Illinois 60637, United States.
Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.
View Article and Find Full Text PDFSoft comput
October 2024
Department of Instrumentation and Control Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, India.
[This retracts the article DOI: 10.1007/s00500-022-06818-1.].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!