Background: Elimination and control of Schistosoma japonicum, the most virulent of the schistosomiasis-causing blood flukes, requires the development of sensitive and specific diagnostic tools capable of providing an accurate measurement of the infection prevalence in endemic areas. Typically, detection of S. japonicum has occurred using the Kato-Katz technique, but this methodology, which requires skilled microscopists, has been shown to radically underestimate levels of infection. With the ever-improving capabilities of next-generation sequencing and bioinformatic analysis tools, identification of satellite sequences and other highly repetitive genomic elements for use as real-time PCR diagnostic targets is becoming increasingly common. Assays developed using these targets have the ability to improve the sensitivity and specificity of results for epidemiological studies that can in turn be used to inform mass drug administration and programmatic decision making.

Methodology/principal Findings: Utilizing Tandem Repeat Analyzer (TAREAN) and RepeatExplorer2, a cluster-based analysis of the S. japonicum genome was performed and a tandemly arranged genomic repeat, which we named SjTR1 (Schistosoma japonicum Tandem Repeat 1), was selected as the target for a real-time PCR diagnostic assay. Based on these analyses, a primer/probe set was designed and the assay was optimized. The resulting real-time PCR test was shown to reliably detect as little as 200 ag of S. japonicum genomic DNA and as little as 1 egg per gram of human stool. Based on these results, the index assay reported in this manuscript is more sensitive than previously published real-time PCR assays for the detection of S. japonicum.

Conclusions/significance: The extremely sensitive and specific diagnostic assay described in this manuscript will facilitate the accurate detection of S. japonicum, particularly in regions with low levels of endemicity. This assay will be useful in providing data to inform programmatic decision makers, aiding disease control and elimination efforts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8568117PMC
http://dx.doi.org/10.1371/journal.pntd.0009877DOI Listing

Publication Analysis

Top Keywords

real-time pcr
16
schistosoma japonicum
12
human stool
8
sensitive specific
8
specific diagnostic
8
detection japonicum
8
pcr diagnostic
8
programmatic decision
8
tandem repeat
8
diagnostic assay
8

Similar Publications

A stable combination of non-stable genes outperforms standard reference genes for RT-qPCR data normalization.

Sci Rep

December 2024

Laboratoire de Recherche en Sciences Végétales, Equipe Génomique et Biotechnologie des Fruits, UMR 5546, CNRS, UPS, Toulouse INP, Université de Toulouse, Toulouse, France.

Gene expression profiling is of key importance in all domains of life sciences, as medicine, environment, and plants, for both basic and applied research. Despite the emergence of microarrays and high-throughput sequencing, qPCR remains a standard method for gene expression analyses, with its data normalization step being crucial for ensuring accuracy. Currently, the most widely used normalization method is based on the use of reference genes, assumed to be stably expressed across all experimental conditions.

View Article and Find Full Text PDF

Single-nucleus transcriptomic profiling of the diaphragm during mechanical ventilation.

Sci Rep

December 2024

Department of Critical Care Medicine, Heping Hospital Affiliated to Changzhi Medical College, 110 South Yan'an Road, Luzhou District, Changzhi City, 046012, China.

Mechanical ventilation contributes to diaphragm atrophy and muscle weakness, which is referred to as ventilator-induced diaphragmatic dysfunction (VIDD). The pathogenesis of VIDD has not been fully understood until recently. The aim of this study was to investigate the effects of 24 h of mechanical ventilation on fibro-adipogenic progenitor (FAP) proliferation, endothelial-mesenchymal transition (EndMT), and immune cell infiltration driving diaphragm fibrosis in a rabbit model.

View Article and Find Full Text PDF

Mycobacterium chimaera, belonging to the Mycobacterium avium complex, is an opportunistic environmental mycobacterium which has been isolated from medical device water samples such as Heater Cooler Units (HCU). Laboratories currently use culture-based diagnostic methods to detect M. chimaera, but these take a long time to obtain results.

View Article and Find Full Text PDF

Introduction: Heavy metal pollution threatens the biodiversity and ecological equilibrium of the Nile River. This study investigates the impact of heavy metal pollution on aquatic animals such as Nile tilapia (Oreochromis niloticus) in the Damietta branch of the River Nile and El-Rayah El-Tawfeeky canal in Benha City in Egypt.

Methods: Fish and water samples were collected from the Damietta branch and El-Rayah El-Tawfeeky during the fall of 2022.

View Article and Find Full Text PDF

MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway.

Eur J Med Res

December 2024

Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.

Background: The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis.

Methods: C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!