Metal ions in sediment are inherent Ca and Fe sources for biochar modification. In this work, the effect of Ca and Fe released from sediment on biochar for phosphorus adsorption was evaluated. Results showed that raw peanut shell biochar (PSB) was poor in phosphorus adsorption (0.48 mg/g); sediment-triggered biochar (S-PSB) exhibited a P adsorption capacity of 1.32 mg/g in capping reactor and maximum adsorption capacity of 10.72 mg/g in the Langmuir model. Sediment released Ca of 2.2-4.1 mg/L and Fe/Fe of 0.2-9.0 mg/L. The metals loaded onto the biochar surface in the forms of Ca-O and Fe-O, with Ca and Fe content of 1.47 and 0.29%, respectively. Sediment metals made point of zero charge (pHpzc) of biochar shifted from 5.39 to 6.46. The mechanisms of enhanced P adsorption by S-PSB were surface complexation of CaHPO followed by precipitation of Ca(PO) and Ca(PO)(OH). Sediment metals induced the modification of biochar and improvement of P adsorption, which was feasible to overcome the shortcomings of biochar on phosphorus control in sediment capping.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2021.411 | DOI Listing |
Environ Pollut
January 2025
Department of Mineral Processing Engineering, Taiyuan University of Technology, Taiyuan, 030024, China.
To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).
View Article and Find Full Text PDFMar Genomics
March 2025
College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:
Vreelandella sp. SM1641 was isolated from the hydrothermal vent sediment of the southwest Indian Ocean at a water depth of 2519 m. The complete genome sequence of strain SM1641 was analyzed to understand its metabolic capacities and biosynthesis potential of natural products in this study.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:
Excessive concentrations of toxic metals are a global threat to aquatic systems. Taking a typical tributary (Zijiang River, ZR) of the midstream of the Yangtze River as the research area, the concentration distribution and chemical fractions occurrence characteristics of five toxic metals (Cd, Cr, Cu, Pb, and Zn) were analyzed, their potential sources were explored, and their contamination and ecological risk was assessed. In the surface waters and sediments, there were high concentrations of Zn, a low concentration of Cd, and small spatial differences in concentration among the upstream, midstream, and downstream.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:
Urban rivers are one of the main water sources for local residents. However, the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers, which posed harmful impact on human health and ecosystem. In this study, 134 sediment samples were collected from urban rivers in a typical Economic and Technological Development Zone (ETDZ) to evaluate the contamination status, ecological risk, biotoxicity, and potential source of 8 heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), plumbum (Pb), and zinc (Zn).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!