Metal ions in sediment are inherent Ca and Fe sources for biochar modification. In this work, the effect of Ca and Fe released from sediment on biochar for phosphorus adsorption was evaluated. Results showed that raw peanut shell biochar (PSB) was poor in phosphorus adsorption (0.48 mg/g); sediment-triggered biochar (S-PSB) exhibited a P adsorption capacity of 1.32 mg/g in capping reactor and maximum adsorption capacity of 10.72 mg/g in the Langmuir model. Sediment released Ca of 2.2-4.1 mg/L and Fe/Fe of 0.2-9.0 mg/L. The metals loaded onto the biochar surface in the forms of Ca-O and Fe-O, with Ca and Fe content of 1.47 and 0.29%, respectively. Sediment metals made point of zero charge (pHpzc) of biochar shifted from 5.39 to 6.46. The mechanisms of enhanced P adsorption by S-PSB were surface complexation of CaHPO followed by precipitation of Ca(PO) and Ca(PO)(OH). Sediment metals induced the modification of biochar and improvement of P adsorption, which was feasible to overcome the shortcomings of biochar on phosphorus control in sediment capping.

Download full-text PDF

Source
http://dx.doi.org/10.2166/wst.2021.411DOI Listing

Publication Analysis

Top Keywords

sediment metals
12
phosphorus adsorption
12
biochar
9
sediment
8
sediment capping
8
biochar phosphorus
8
adsorption capacity
8
adsorption
7
metals adhering
4
adhering biochar
4

Similar Publications

To realize the comprehensive utilization of large amounts of high-ash coal slime and comprehensively understand the excellent performance of nutrient release and lead and cadmium adsorption of high-ash coal slime silicon composite materials, green and safe mild hydrothermal conditions (200 °C) were used to prepare the rich-rich coal slime. Zeolite/tobermorite composites (Z-TOBs) were used in this study. Batch adsorption tests and repeated extraction tests were used to determine whether silicon, potassium, and calcium nutrients of Z-TOBs have sustained release properties and are affected by pH.

View Article and Find Full Text PDF

Photocatalytic water disinfection technology is highly promising in off-grid areas due to abundant year-round solar irradiance. However, the practical use of powdered photocatalysts is impeded by limited recovery and inefficient inactivation of stress-resistant bacteria in oligotrophic surface water. Here we prepare a floatable monolithic photocatalyst with ZIF-8-NH loaded Ag single atoms and nanoparticles (Ag/ZIF).

View Article and Find Full Text PDF

Complete genome sequence of Vreelandella sp. SM1641, a marine exopolysaccharide-producing bacterium isolated from deep-sea hydrothermal sediment of the Southwest Indian Ocean.

Mar Genomics

March 2025

College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, China. Electronic address:

Vreelandella sp. SM1641 was isolated from the hydrothermal vent sediment of the southwest Indian Ocean at a water depth of 2519 m. The complete genome sequence of strain SM1641 was analyzed to understand its metabolic capacities and biosynthesis potential of natural products in this study.

View Article and Find Full Text PDF

Distribution, sources, contamination, and risks of toxic metals in Zijiang River, a typical tributary of the midstream of the Yangtze River in China.

J Environ Sci (China)

July 2025

State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China. Electronic address:

Excessive concentrations of toxic metals are a global threat to aquatic systems. Taking a typical tributary (Zijiang River, ZR) of the midstream of the Yangtze River as the research area, the concentration distribution and chemical fractions occurrence characteristics of five toxic metals (Cd, Cr, Cu, Pb, and Zn) were analyzed, their potential sources were explored, and their contamination and ecological risk was assessed. In the surface waters and sediments, there were high concentrations of Zn, a low concentration of Cd, and small spatial differences in concentration among the upstream, midstream, and downstream.

View Article and Find Full Text PDF

Contamination and ecological risk of heavy metals in sediments of urban rivers in a typical economic development zone, southern China.

J Environ Sci (China)

July 2025

Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China. Electronic address:

Urban rivers are one of the main water sources for local residents. However, the rapid industrialization and urbanization caused serious heavy metals pollution in urban rivers, which posed harmful impact on human health and ecosystem. In this study, 134 sediment samples were collected from urban rivers in a typical Economic and Technological Development Zone (ETDZ) to evaluate the contamination status, ecological risk, biotoxicity, and potential source of 8 heavy metals including arsenic (As), cadmium (Cd), chromium (Cr), copper (Cu), mercury (Hg), nickel (Ni), plumbum (Pb), and zinc (Zn).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!