Tucker decomposition can provide an intuitive summary to understand brain function by decomposing multi-subject fMRI data into a core tensor and multiple factor matrices, and was mostly used to extract functional connectivity patterns across time/subjects using orthogonality constraints. However, these algorithms are unsuitable for extracting common spatial and temporal patterns across subjects due to distinct characteristics such as high-level noise. Motivated by a successful application of Tucker decomposition to image denoising and the intrinsic sparsity of spatial activations in fMRI, we propose a low-rank Tucker-2 model with spatial sparsity constraint to analyze multi-subject fMRI data. More precisely, we propose to impose a sparsity constraint on spatial maps by using an l norm ( ), in addition to adding low-rank constraints on factor matrices via the Frobenius norm. We solve the constrained Tucker-2 model using alternating direction method of multipliers, and propose to update both sparsity and low-rank constrained spatial maps using half quadratic splitting. Moreover, we extract new spatial and temporal features in addition to subject-specific intensities from the core tensor, and use these features to classify multiple subjects. The results from both simulated and experimental fMRI data verify the improvement of the proposed method, compared with four related algorithms including robust Kronecker component analysis, Tucker decomposition with orthogonality constraints, canonical polyadic decomposition, and block term decomposition in extracting common spatial and temporal components across subjects. The spatial and temporal features extracted from the core tensor show promise for characterizing subjects within the same group of patients or healthy controls as well.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9012952PMC
http://dx.doi.org/10.1109/TMI.2021.3122226DOI Listing

Publication Analysis

Top Keywords

fmri data
16
spatial temporal
16
tucker-2 model
12
multi-subject fmri
12
sparsity constraint
12
tucker decomposition
12
core tensor
12
spatial
9
low-rank tucker-2
8
spatial sparsity
8

Similar Publications

Mild cognitive impairment (MCI) is a significant predictor of the early progression of Alzheimer's disease, and it can be used as an important indicator of disease progression. However, many existing methods focus mainly on the image itself when processing brain imaging data, ignoring other non-imaging data (e.g.

View Article and Find Full Text PDF

Chronic pain is a pervasive and debilitating condition with increasing implications for public health, affecting millions of individuals worldwide. Despite its high prevalence, the underlying neural mechanisms and pathophysiology remain only partly understood. Since its introduction 35 years ago, brain diffusion magnetic resonance imaging (MRI) has emerged as a powerful tool to investigate changes in white matter microstructure and connectivity associated with chronic pain.

View Article and Find Full Text PDF

This study presents the construction of a comprehensive spatiotemporal atlas of white matter tracts in the fetal brain for every gestational week between 23 and 36 wk using diffusion MRI (dMRI). Our research leverages data collected from fetal MRI scans, capturing the dynamic changes in the brain's architecture and microstructure during this critical period. The atlas includes 60 distinct white matter tracts, including commissural, projection, and association fibers.

View Article and Find Full Text PDF

Objective: The objective was to comprehensively investigate the clinical, molecular, and imaging characteristics and outcomes of H3 K27-altered diffuse midline glioma (DMG) in adults.

Methods: Retrospective chart and imaging reviews were performed in 111 adult patients with H3 K27-altered DMG from two tertiary institutions. Clinical, molecular, imaging, and survival characteristics were analyzed.

View Article and Find Full Text PDF

Background: Glioblastoma is characterized by neovascularization and diffuse infiltration into the adjacent tissue. T2*-based dynamic susceptibility contrast (DSC) MR perfusion images provide useful measurements of the biomarkers associated with tumor perfusion. This study aimed to distinguish infiltrating tumors from vasogenic edema in glioblastomas using DSC-MR perfusion images.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!