Zerumbone attenuates house dust mite extract-induced epithelial barrier dysfunction in 16HBE14o- cells.

Immunopharmacol Immunotoxicol

Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia.

Published: December 2021

Context: The airway epithelial barrier can be disrupted by house dust mite (HDM) allergens leading to allergic airway inflammation. Zerumbone, a natural monocyclic sesquiterpene, was previously found to possess anti-asthmatic effect by modulating Th1/Th2 cytokines. However, the protective role of zerumbone on epithelial barrier function remains to be fully explored.

Objective: To investigate the effect of zerumbone on HDM extract-induced airway epithelial barrier dysfunction.

Materials And Methods: Human bronchial epithelial cells 16HBE14o- were incubated with 100 μg/mL HDM extract and treated with non-cytotoxic concentrations of zerumbone (6.25 μM, 12.5 μM, and 25 μM) for 24 h. The epithelial junctional integrity and permeability were evaluated through transepithelial electrical resistance (TEER) and fluorescein isothiocynate (FITC)-Dextran permeability assays, respectively. The localization of junctional proteins, occludin and zona occludens (ZO)-1, was studied using immunofluorescence (IF) while the protein expression was measured by western blot.

Results: Zerumbone inhibited changes in junctional integrity (6.25 μM,  ≤ .05; 12.5 μM,  ≤ .001; 25 μM,  ≤ .001) and permeability (6.25 μM,  ≤ .05; 12.5 μM,  ≤ .01; 25 μM,  ≤ .001) triggered by HDM extract in a concentration-dependent manner. This protective effect could be explained by the preservation of occludin (12.5 μM,  ≤ .01 and 25 μM,  ≤ .001) and ZO-1 (12.5 μM,  ≤ .05 and 25 μM,  ≤ .001) localization, rather than the prevention of their cleavage.

Discussion And Conclusion: Zerumbone attenuates HDM extract-induced epithelial barrier dysfunction which supports its potential application for the treatment of inflammation-driven airway diseases such as asthma.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2021.1992633DOI Listing

Publication Analysis

Top Keywords

epithelial barrier
20
25 μm  ≤ 001
16
zerumbone attenuates
8
house dust
8
dust mite
8
extract-induced epithelial
8
barrier dysfunction
8
airway epithelial
8
hdm extract-induced
8
hdm extract
8

Similar Publications

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

The Gut in Critical Illness.

Curr Gastroenterol Rep

December 2025

Division of Pulmonary, Critical Care, and Sleep Medicine, Medical College of Wisconsin, 8701 West Watertown Plank Road, 8th Floor: HUB for Collaborative Medicine, Milwaukee, WI, 53226, USA.

Purpose Of Review: The purpose of this narrative review is to describe the mechanisms for gut dysfunction during critical illness, outline hypotheses of gut-derived inflammation, and identify nutrition and non-nutritional therapies that have direct and indirect effects on preserving both epithelial barrier function and gut microbiota during critical illness.

Recent Findings: Clinical and animal model studies have demonstrated that critical illness pathophysiology and interventions breach epithelial barrier function and convert a normally commensal gut microbiome into a pathobiome. As a result, the gut has been postulated to be the "motor" of critical illness and numerous hypotheses have been put forward to explain how it contributes to systemic inflammation and drives multiple organ failure.

View Article and Find Full Text PDF

Intestinal Barrier Damage and Growth Retardation Caused by Exposure to Polystyrene Nanoplastics Through Lactation Milk in Developing Mice.

Nanomaterials (Basel)

January 2025

National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.

Microplastics, defined as plastic fragments smaller than 5 mm, degrade from larger pollutants, with nanoscale microplastic particles presenting significant biological interactions. This study investigates the toxic effects of polystyrene nanoplastics (PS-NPs) on juvenile mice, which were exposed through lactation milk and drinking water at concentrations of 0.01 mg/mL, 0.

View Article and Find Full Text PDF

Microplastics (MPs) in fish can cross the intestinal barrier and are often bioaccumulated in several tissues, causing adverse effects. While the impacts of MPs on fish are well documented, the mechanisms of their cellular internalization remain unclear. A rainbow-trout () intestinal platform, comprising proximal and distal intestinal epithelial cells cultured on an Alvetex scaffold, was exposed to 50 mg/L of MPs (size 1-5 µm) for 2, 4, and 6 h.

View Article and Find Full Text PDF

The genes are important for growth in the presence of sphingosine by promoting sphingosine metabolism.

Microbiology (Reading)

January 2025

Department of Microbiology and Molecular Genetics, Larner College of Medicine, University of Vermont, Burlington, USA.

Sphingoid bases, including sphingosine, are important components of the antimicrobial barrier at epithelial surfaces where they can cause growth inhibition and killing of susceptible bacteria. is a common opportunistic pathogen that is less susceptible to sphingosine than many Gram-negative bacteria. Here, we determined that the deletion of the operon reduced growth in the presence of sphingosine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!