The α-hydroxytropolones (αHTs) are troponoid inhibitors of hepatitis B virus (HBV) replication that can target HBV RNase H with submicromolar efficacies. αHTs and related troponoids (tropones and tropolones) can be cytotoxic in cell lines as measured by 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2-tetrazolium (MTS) assays that assess mitochondrial function. Previous studies suggest that tropolones induce cytotoxicity through inhibition of mitochondrial respiration. Therefore, we screened 35 diverse troponoids for effects on mitochondrial function, mitochondrial/nuclear genome ratios, cytotoxicity, and reactive oxygen species (ROS) production. Troponoids as a class did not inhibit respiration or glycolysis, although the α-ketotropolone subclass interfered with these processes. The troponoids had no impact on the mitochondrial DNA/nuclear DNA ratio after 3 days of compound exposure. The patterns of troponoid-induced cytotoxicity among three hepatic cell lines were similar for all compounds, but three potent HBV RNase H inhibitors were not cytotoxic in primary human hepatocytes. Tropolones and αHTs increased ROS production in cells at cytotoxic concentrations but had no effect at lower concentrations that efficiently inhibit HBV replication. Troponoid-mediated cytotoxicity was significantly decreased upon the addition of the ROS scavenger -acetylcysteine. These studies show that troponoids can increase ROS production at high concentrations within cell lines, leading to cytotoxicity, but are not cytotoxic in primary hepatocytes. Future development of αHTs as potential therapeutics against HBV may need to mitigate ROS production by altering compound design and/or by coadministering ROS antagonists to ameliorate increased ROS levels.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8765277 | PMC |
http://dx.doi.org/10.1128/AAC.01617-21 | DOI Listing |
Curr Neuropharmacol
January 2025
Department of Stem Cell Bioengineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego 5 Str, 02-106 Warsaw, Poland.
The purpose of this review was to analyse the literature regarding the correlation between the level of tryptamine, aryl hydrocarbon receptor (AHR) signalling pathway activation, and monoamine oxidase (MAO)-A and MAO-B activity in health and conditions such as neurodegenerative, neurodevelopmental, and psychiatric disorders. Tryptamine is generated through the decarboxylation of tryptophan by aromatic amino acid decarboxylase (AADC) in the central nervous system (CNS), peripheral nervous system (PNS), endocrine system, and gut bacteria. Organ-specific metabolism of tryptamine, which is mediated by different MAO isoforms, causes this trace amine to have different pharmacokinetics between the brain and periphery.
View Article and Find Full Text PDFBiomacromolecules
January 2025
School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications.
View Article and Find Full Text PDFiScience
January 2025
Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
We and others previously found that a misannotated long noncoding RNA encodes for a conserved mitochondrial transmembrane microprotein named Mitoregulin (Mtln). Beyond an established role for Mtln in lipid metabolism, Mtln has been shown to broadly influence mitochondria, boosting respiratory efficiency and Ca retention capacity, while lowering ROS, yet the underlying mechanisms remain unresolved. Prior studies have identified possible Mtln protein interaction partners; however, a lack of consensus persists, and no claims have been made about Mtln's structure.
View Article and Find Full Text PDFMater Today Bio
February 2025
Department of Urology, Jiangnan University Affiliated Hospital, Medical College of Jiangnan University, Wuxi 214125, China.
Currently, most peripheral nerve injuries are incurable mainly due to excessive reactive oxygen species (ROS) generation in inflammatory tissues, which can further exacerbate localized tissue injury and cause chronic diseases. Although promising for promoting nerve regeneration, stem cell therapy still suffers from abundant intrinsic limitations, mainly including excessive ROS in lesions and inefficient production of growth factors (GFs). Biomaterials that scavenge endogenous ROS and promote GFs secretion might overcome such limitations and thus are being increasingly investigated.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People's Republic of China.
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!