Internuclear distances represent one of the main structural constraints in molecular structure determination using solid-state NMR spectroscopy, complementing chemical shifts and orientational restraints. Although a large number of magic-angle-spinning (MAS) NMR techniques have been available for distance measurements, traditional C and N NMR experiments are inherently limited to distances of a few angstroms due to the low gyromagnetic ratios of these nuclei. Recent development of fast MAS triple-resonance F and H NMR probes has stimulated the design of MAS NMR experiments that measure distances in the 1-2 nm range with high sensitivity. This review describes the principles and applications of these multiplexed multidimensional correlation distance NMR experiments, with an emphasis on F- and H-based distance experiments. Representative applications of these long-distance NMR methods to biological macromolecules as well as small molecules are reviewed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9035484PMC
http://dx.doi.org/10.1021/acs.chemrev.1c00662DOI Listing

Publication Analysis

Top Keywords

nmr experiments
12
nmr
8
solid-state nmr
8
mas nmr
8
angstroms nanometers
4
nanometers measuring
4
measuring interatomic
4
distances
4
interatomic distances
4
distances solid-state
4

Similar Publications

Introduction: Type 2 diabetes mellitus (T2DM) is linked to abnormal brain structure and cognitive dysfunction. However, there is a lack of studies conducted to assess the impact of diabetes on cortical gyrification and cognition. The aim of this cross-sectional study was to assess the potential negative effects of glucose metabolism levels on cognition and cortical gyrification in T2DM.

View Article and Find Full Text PDF

Background: Real-time (RT) phase contrast (PC) flow MRI can potentially be used to measure blood flow in arrhythmic patients. Undersampled RT PC has been combined with online compressed sensing (CS) reconstruction (CS RT) enabling clinical use. However, CS RT flow has not been validated in a clinical setting.

View Article and Find Full Text PDF

Sensitivity of Functional Arterial Spin Labelling in Detecting Cerebral Blood Flow Changes.

Br J Hosp Med (Lond)

December 2024

Department of Neurology, Wuhan Brain Hospital, General Hospital of Yangtze River Shipping, Wuhan, Hubei, China.

Arterial spin labelling (ASL) is a non-invasive magnetic resonance imaging (MRI) method. ASL techniques can quantitatively measure cerebral perfusion by fitting a kinetic model to the difference between labelled images (tag images) and ones which are acquired without labelling (control images). ASL functional MRI (fMRI) provides quantitative perfusion maps by using arterial water as an endogenous tracer instead of depending on vascular blood oxygenation level.

View Article and Find Full Text PDF

The formation of novel complexes from so far non-investigated ligands and different metal centers is important for the development of new functional materials such as (photo)catalysts or biologically active compounds. Still, promising strategies to quickly and systematically investigate the complexation behavior of selected ligands are rare. We developed an NMR-based screening approach to monitor changes within reaction mixtures containing metals and ligands on a small scale a simple but reliable protocol.

View Article and Find Full Text PDF

EmrE is a bacterial membrane-embedded multidrug transporter that functions as an asymmetric homodimer. EmrE is implicated in antibiotic resistance, but is now known to confer either resistance or susceptibility depending on the identity of the small molecule substrate. Here, we report both solution- and solid-state NMR assignments of S64V-EmrE at pH 5.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!