Long considered a homogeneous population dedicated to antibody secretion, plasma cell phenotypic and functional heterogeneity is increasingly recognized. Plasma cells were first segregated based on their maturation level, but the complexity of this subset might well be underestimated by this simple dichotomy. Indeed, in the last decade new functions have been attributed to plasma cells including but not limited to cytokine secretion. However, a proper characterization of plasma cell heterogeneity has remained elusive partly due to technical issues and cellular features that are specific to this cell type. Cell intrinsic and cell extrinsic signals could be at the origin of this heterogeneity. Recent advances in technologies such as single cell RNA-seq, ATAC-seq, or ChIP-seq on low cell numbers helped to elucidate the fate decision in other cell lineages and similar approaches could be implemented to evaluate the heterogeneous fate of activated B cells in health and disease. Here, we summarized published work shedding some lights on the stimuli and genetic program shaping B-cell terminal differentiation at the single cell level in mice and men. We also discuss the fate and heterogeneity of plasma cells during immune responses, vaccination, and in the frame of human plasma cell disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1002/eji.202149216DOI Listing

Publication Analysis

Top Keywords

plasma cell
16
plasma cells
12
cell
11
health disease
8
single cell
8
plasma
7
single-cell resolution
4
resolution plasma
4
fate
4
cell fate
4

Similar Publications

Identification of differentially expressed non-coding RNAs in the plasma of women with preterm birth.

RNA Biol

December 2025

Biorepository and Omics Research Group, Department of Pediatrics and Child Health, Faculty of Health Sciences, Medical College, The Aga Khan University, Karachi, Pakistan.

This study aimed to identify differentially expressed non-coding RNAs (ncRNAs) associated with preterm birth (PTB) and determine biological pathways being influenced in the context of PTB. We processed cell-free RNA sequencing data and identified seventeen differentially expressed (DE) ncRNAs that could be involved in the onset of PTB. Per the validation via customized RT-qPCR, the recorded variations in expressions of eleven ncRNAs were concordant with the analyses.

View Article and Find Full Text PDF

Extracellular vesicles (EVs), membrane-encapsulated nanoparticles shed from all cells, are tightly involved in critical cellular functions. Moreover, EVs have recently emerged as exciting therapeutic modalities, delivery vectors, and biomarker sources. However, EVs are difficult to characterize, because they are typically small and heterogeneous in size, origin, and molecular content.

View Article and Find Full Text PDF

Hepatoma cell-derived exosomal SNORD52 mediates M2 macrophage polarization by activating the JAK2/STAT6 pathway.

Discov Oncol

January 2025

Department of Hepatobiliary Pancreatic Splenic Surgery, Taizhou Central Hospital (Taizhou University Hospital), No.999 Donghai Road, Taizhou, 318000, Zhejiang, China.

Background: A recent study revealed the oncogenic role of box C/D small nucleolar RNA 52 (SNORD52) in hepatocellular carcinoma (HCC) by facilitating the aggressive phenotypes of hepatoma cells. However, the potential role of exosomal SNORD52 in macrophage polarization during HCC progression remains poorly understood.

Methods: Exosomes were isolated from hepatoma cells.

View Article and Find Full Text PDF

This study investigated tempol action on genes and miRNAs related to NFκB pathway in androgen dependent or independent cell lines and in TRAMP model in the early and late-stages of cancer progression. A bioinformatic search was conducted to select the miRNAs to be measured based on the genes of interest from NFκB pathway. The miR-let-7c-5p, miR-26a-5p and miR-155-5p and five target genes (BCL2, BCL2L1, RELA, TNF, PTGS2) were chosen for RT-PCR and gene enrichment analyses.

View Article and Find Full Text PDF

Aims: The gastrointestinal (GI) tract is composed of distinct sub-regions, which exhibit segment-specific differences in microbial colonization and (patho)physiological characteristics. Gut microbes can be collectively considered as an active endocrine organ. Microbes produce metabolites, which can be taken up by the host and can actively communicate with the immune cells in the gut lamina propria with consequences for cardiovascular health.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!