Preparation of Multifunctional Silk-Based Microcapsules loaded with DNA Plasmids Encoding RNA Aptamers and Riboswitches.

J Vis Exp

711th Human Performance Wing, Airman Systems Directorate, Air Force Research Laboratory, Wright-Patterson AFB;

Published: October 2021

We introduce a protocol for the preparation of DNA-laden silk fibroin microcapsules via the Layer-by-Layer (LbL) assembly method on sacrificial spherical cores. Following adsorption of a prime layer and DNA plasmids, the formation of robust microcapsules was facilitated by inducing β-sheets in silk secondary structure during acute dehydration of a single silk layer. Hence, the layering occurred via multiple hydrogen bonding and hydrophobic interactions. Upon adsorption of multilayered shells, the core-shell structures can be further functionalized with gold nanoparticles (AuNPs) and/or antibodies (IgG) to be used for remote sensing and/or targeted delivery. Adjusting several key parameters during sequential deposition of key macromolecules on silica cores such as the presence of a polymer primer, the concentration of DNA and silk protein, as well as a number of adsorbed layers resulted in biocompatible, DNA-laden microcapsules with variable permeability and DNA loadings. Upon dissolution of silica cores, the protocol demonstrated the formation of hollow and robust microcapsules with DNA plasmids immobilized to the inner surface of the capsule membrane. Creating a selectively permeable biocompatible membrane between the DNA plasmids and the external environment preserved the DNA during long-term storage and played an important role in the improved output response from spatially confined plasmids. The activity of DNA templates and their accessibility were tested during in vitro transcription and translation reactions (cell-free systems). DNA plasmids encoding RNA light-up aptamers and riboswitches were successfully activated with corresponding analytes, as was visualized during localization of fluorescently labeled RNA transcripts or GFPa1 protein in the shell membranes.

Download full-text PDF

Source
http://dx.doi.org/10.3791/62854DOI Listing

Publication Analysis

Top Keywords

dna plasmids
20
dna
9
plasmids encoding
8
encoding rna
8
aptamers riboswitches
8
robust microcapsules
8
silica cores
8
plasmids
6
microcapsules
5
preparation multifunctional
4

Similar Publications

Effects of mirror-image nucleosides on DNA replication and transcription in human cells.

J Biol Chem

December 2024

School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, PR China; State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, PR China. Electronic address:

Mirror-image nucleosides, as potential antiviral drugs, can inhibit virus DNA polymerase to prevent virus replication. Conversely, they may be inserted into the DNA strands during DNA replication or transcription processes, leading to mutations that affect genome stability. Accumulation of significant mutation damage in cells may result in cell aging, apoptosis, and even uncontrolled cell division.

View Article and Find Full Text PDF

Effect of a Mating Type Gene Editing in Using RNP/Nanoparticle Complex.

J Fungi (Basel)

December 2024

Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Eumseong 27709, Republic of Korea.

Gene editing using CRISPR/Cas9 is an innovative tool for developing new mushroom strains, offering a promising alternative to traditional breeding methods that are time-consuming and labor-intensive. However, plasmid-based gene editing presents several challenges, including the need for selecting appropriate promoters for Cas9 expression, optimizing codons for the Cas9 gene, the unintended insertion of fragmented plasmid DNA into genomic DNA (gDNA), and regulatory concerns related to genetically modified organisms (GMOs). To address these issues, we utilized a Ribonucleoprotein (RNP) complex consisting of Cas9 and gRNA for gene editing to modify the A mating-type gene of .

View Article and Find Full Text PDF

Generation of transgenic chicken through ovarian injection.

Animal Model Exp Med

December 2024

Frontiers Science Center for Molecular Design Breeding (MOE), State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.

Background: Traditional DNA microinjection methods used in mammals are difficult to apply to avian species due to their unique reproductive characteristics. Genetic manipulation in chickens, particularly involving immature follicles within living ovaries, has not been extensively explored. This study seeks to establish an efficient method for generating transgenic chickens through ovarian injection, potentially bypassing the challenges associated with primordial germ cell (PGC) manipulation and fertilized egg microinjection.

View Article and Find Full Text PDF

Coselection of BAC for Escherichia coli chromosomal DNA multiplex automated genome engineering.

Biotechnol Lett

December 2024

Jiangsu Key Laboratory for Pathogens and Ecosystems, College of Life Sciences, Nanjing Normal University, No.1 Wenyuan Rd., Xixia District, Nanjing, 210023, Jiangsu, People's Republic of China.

Recombineering (recombination-mediated genetic engineering) is a powerful strategy for bacterial genomic DNA and plasmid DNA modifications. CoS-MAGE improved over MAGE (multiplex automated genome engineering) by co-electroporation of an antibiotic resistance repair oligo along with the oligos for modification of the Escherichia coli chromosome. After several cycles of recombineering, the sub-population of mutants were selected among the antibiotic resistant colonies.

View Article and Find Full Text PDF

Toxoplasmosis is a foodborne zoonotic parasitic disease caused by Toxoplasma gondii, which seriously threatens to human health and causes economic losses. At present, there is no effective vaccine strategy for the prevention and control of toxoplasmosis. T.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!