The present study was performed to investigate the effects of zinc supplementation on freezing thawing damage in adipose tissue-derived mesenchymal stromal cells (MSC) of mice through studying cellular viability and gene expression profile of apoptosis. Slow freezing method was conducted and the samples were treated with zinc doses 0, 2.5, 5, 10, 25, 50 and 100 µM. Viability was increased in groups of 2.5, 10 and 25 µM zinc in comparison to the control group. Gene expression study showed that in the group of 2.5 µM zinc, , and had down regulation. Up regulation of was observed in the groups of 10 and 25 µM zinc. did not have a protecting regulation in the groups of study. The present study showed that doses 2.5-25 µM of zinc had a rather safe toxicity, increased cellular viability, and ameliorated expression of apoptosis-related genes in both intrinsic and extrinsic pathways.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10826068.2021.1983830DOI Listing

Publication Analysis

Top Keywords

25 µm zinc
12
effects zinc
8
expression apoptosis-related
8
apoptosis-related genes
8
freezing thawing
8
thawing damage
8
damage adipose
8
mesenchymal stromal
8
stromal cells
8
cellular viability
8

Similar Publications

One of the main difficulties in nanotechnology is the development of an environmentally friendly, successful method of producing nanoparticles from biological sources. Silver-doped zinc oxide nanoparticles (Ag-ZnO NPs), with antibacterial and antioxidant properties, were produced using Adiantum venustum extract as a green technique. Fresh A.

View Article and Find Full Text PDF

Photothermal Coating on Zinc Alloy for Controlled Biodegradation and Improved Osseointegration.

Adv Sci (Weinh)

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, No.22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, China.

Zinc (Zn) and its alloys are promising biomaterials for orthopedic applications due to their degradability and mechanical properties. Zn plays a crucial role in bone formation, but excessive early release may cause cytotoxicity and inhibit osseointegration. To solve this, we developed a near-infrared (NIR) light-controlled polycaprolactone/copper-sulfur (PCL/CuS) coating that slows degradation and enhances osseointegration of Zn alloys.

View Article and Find Full Text PDF

Novel sustainable agricultural strategies that enhance soil nutrients and human nutrition are crucial for meeting global food production needs. Here, we evaluate the potential of "glacial flour," a naturally crushed rock produced by glaciers known to be rich in nutrients (P, K, and micronutrients) needed for plant growth. Our proof-of-concept study, investigated soybean ( var.

View Article and Find Full Text PDF

A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe-N-C Oxygen Reduction Catalysts.

Angew Chem Int Ed Engl

January 2025

Hunan University, Chemistry and Chemical Engineering, Lushan South Road, Yuelu District, 410082, Changsha, CHINA.

Site density and turnover frequency are the two fundamental kinetic descriptors that determine the oxygen reduction activity of iron-nitrogen-carbon (Fe-N-C) catalysts. However, it remains a grand challenge to simultaneously optimize these two parameters in a single Fe-N-C catalyst. Here we show that treating a typical Fe-N-C catalyst with ammonium iodine (NH4I) vapor via a one-step chemical vapor deposition process not only increases the surface area and porosity of the catalyst (and thus enhanced exposure of active sites) via the etching effect of the in-situ released NH3, but also regulates the electronic structure of the Fe-N4 moieties by the iodine dopants incorporated into the carbon matrix.

View Article and Find Full Text PDF

Zinc tin oxide (ZTO) is investigated as a photoluminescent sensor for oxygen (O2); chemisorbed oxygen quenches the luminescence intensity. At the same time, ZTO is also studied as a resistive sensor; being an n-type semiconductor, its electrical conductance decreases by adsorption of oxygen. Both phenomena can be exploited for quantitative O2 sensing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!